
ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1519

SOFTWARE CLONE REFACTORING
ASSISTANCE USING MACHINE

LEARNING
1Mrs. SHIVA SREE, 2S. SHIVA TEJA, 3K. SANDEEP SAGAR, 4K. MADHU SUDHAN

REDDY

(Assistant Professor) ,CSE. Teegala Krishna Reddy Engineering College Hyderabad

B,tech scholar ,CSE. Teegala Krishna Reddy Engineering College Hyderabad

ABSTRACT

Advising developers on refactoring code clones is designed to provide a thorough understanding

of the process and its application. It starts with an introduction that underlines the importance of

code clone refactoring and software quality improvement, providing context for the proposed

approach. The background section provides an overview of code clones and existing approaches

to code clone detection and refactoring, laying the groundwork for the suggested methodology.

The methodology section digs into the intricacies of the proposed solution, outlining the process

of automatically extracting features from discovered code clones and training machine learning

models to categorize clones based on the type of refactoring required. It also covers the unusual

approach of transforming clone type outliers into a "Unknown" clone set. This improves

classification results. The section emphasizes the use of cutting-edge classification models for

training, highlighting the technical sophistication of the technique. The documentation in the

implementation section includes practical insights into how to implement the proposed approach,

including the necessary software libraries and tools. It may include code snippets or illustrations

to help developers comprehend important concepts and implement the method in their

applications. The evaluation methodology section describes how the efficacy of the suggested

strategy was assessed, including the metrics utilized for evaluation and comparisons to existing

methods. This serves as a foundation for evaluating the performance and effectiveness of the



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1520

proposed technique in real-world circumstances. The case studies section provides real-world

examples or case studies. The case studies section includes real-world case studies or examples

that demonstrate the practical application and effectiveness of the suggested approach for

guiding developers on reworking code clones. This helps to validate the methodology and its

possible impact on software development methods. The future work section provides prospective

areas for more research and enhancements to the suggested approach, setting the path for

continued progress in the field of code clone refactoring and software quality enhancement.

Finally, the conclusion outlines the important findings and contributions of the proposed

approach, emphasizing its usefulness in improving software quality through effective code clone

refactoring.

1. INTRODUCTION

In software development, code clones—pairs of code fragments with a high degree of similarity

or identical content—occur frequently. Code cloning has drawbacks in addition to advantages

like faster coding and code reuse. Clones can hinder code comprehension and make software

maintenance more challenging, which emphasizes the necessity to solve clone-related concerns.

Different methods have been created to find code clones in the source code of a system by

finding code fragments that are identical to each other. Furthermore, clone structures can be

changed without affecting their behaviour with the use of refactoring tools, which lowers the

possibility of adding bugs. Dealing with code clones requires refactoring, an important technique

for enhancing the quality and maintainability of code. However, clone refactoring's efficacy may

be constrained by elements like clones' brief life spans and the difficulty of refactoring modified

clones. The project's main goal is to help developers refactor code clones in order to improve

software quality and reduce problems. In order to do this, the project suggests a novel method

that includes automatically identifying attributes in identified code clones and using that

information to train machine learning models that would advise developers on the kind of

refactoring that should be done.

The project's method generates a unified model for recognizing different sorts of refactored

clones and anonymous clones, in contrast to current approaches that consider refactored clone

types as discrete classes. The project also presents a technique to improve classification accuracy

by restructuring clone type outliers into a "Unknown" clone set. By discovering and modifying



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1521

duplicate code, the initiative hopes to reduce problems in software systems and enhance clone

maintenance. The project's unique approach to clone refactoring and its ability to greatly enhance

software quality and maintenance procedures are its key contributions.

1.1 PROBLEM STATEMENT "In software development, identifying and refactoring code

clones is crucial for maintaining code quality and reducing redundancy. However, existing

methods for clone detection and refactoring often struggle with accurately categorizing and

refactoring clones, especially when dealing with unknown or abnormal clone types. This project

aims to address these challenges by proposing a novel approach that combines outlier detection

methods with supervised learning classifiers to enhance the detection and classification of code

clones, particularly unknown clone sets. The goal is to improve the reliability and effectiveness

of clone detection and refactoring in software projects."

1.2 PROBLEM STATEMENT Detecting and refactoring code clones is crucial for improving

software quality and reducing redundancy. However, existing methods face challenges in

accurately identifying and refactoring clones, especially when dealing with unknown or

abnormal clone types. To address these issues, this project proposes a novel approach that

integrates outlier detection techniques with supervised learning classifiers. By combining these

methods, the project aims to enhance the detection and classification of code clones, particularly

unknown clone sets. This innovative approach is designed to improve the reliability and

effectiveness of clone detection and refactoring in software projects, ultimately leading to higher

quality software products.

2. LITERATURE SURVEY

The literature survey on code clone detection and refactoring provides a thorough overview of

the issues and techniques for handling code clones, which are identical or similar code fragments

within a software system. One of the main conclusions of a Microsoft study is the difficulties in

proactively preserving consistency and deleting unneeded clones, particularly in large-scale

commercial software. This emphasizes the necessity of effective clone detection technologies

and techniques in reducing the possible detrimental effects of code clones on program

maintenance and comprehension. Another key technique, known as CREC, focuses on advising

code clone refactoring using a combination of current and historical data. CREC creates a



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1522

training set by automatically extracting clone groups that have been historically refactored from

those that have not. When compared to other techniques, this method shows promise in

producing high F-scores for clones that need to be refactored. It emphasizes how crucial it is to

use historical data to improve the efficacy of clone refactoring suggestions. Additionally, studies

on clone maintenance and change through refactoring approaches highlight the contribution of

refactoring to better software maintainability. Through the application of refactoring techniques

like the "Extract Method" and "Pull Up Method," developers are able to eliminate code clones

and enhance the software's complexity and understandability. This demonstrates how refactoring

may be used in practice to address code clones and improve the quality of software.

3. SYSTEM DESIGN

3.1 SYSTEM ARCHITECTURE

Our code clone detection and refactoring guidance system's architecture is designed to streamline

the process of identifying and improving code clones. It begins with the User Interface (UI),

where users can upload code files for analysis. The Natural Language Toolkit (NLTK) is then

used to process these files, extracting features and normalizing them to a range of 0 to 1 by

averaging word counts. The next step involves passing the normalized feature vectors through

the Local Outlier Factor (LOF) algorithm to identify significant attributes. The LOF algorithm

assigns a score of 1 to attributes considered anomalies and -1 to outliers, helping to pinpoint

important characteristics for further analysis. Once the essential features are extracted, they are

used to train a machine learning model. This model is utilized by the Code Advisor module to

predict which code files need to be refactored. Developers are then provided with

recommendations on which sections of the codebase require attention and potential refactoring,

aiding in improving the overall quality and maintainability of the codebase. This system

architecture ensures accurate and efficient code clone detection and refactoring recommendations,

ultimately enhancing the development process and software quality.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1523

Fig 3.1 System Architecture

3.2 ACTIVITY DIAGRAM

An activity diagram in UML serves as a behavioral diagram that depicts the flow of control

within a system or process. It provides a visual representation of the dynamic behavior of the

system, showcasing the sequence of activities and actions carried out by actors or components.

Below is a detailed explanation of the essential components and their functions in an activity

diagram:

1. Activities: Activities shown as rounded rectangles, embody the tasks or actions executed

within the system. They can vary from straightforward operations to intricate processes.

2. Transitions: Transitions in an activity diagram indicate the sequence of activities and how

control flows from one activity to another. They are represented by arrows connecting activities

and may include conditions or guards that determine when they are activated.

3. Decisions (Branches): Decisions in an activity diagram symbolize moments in the process

where the flow of control can branch out depending on specific conditions. Shaped like

diamonds, they feature multiple outgoing transitions, each corresponding to a potential outcome.

4. Initial and Final Nodes: The initial node signifies the beginning of the activity diagram and

is denoted by a filled circle with an outward-pointing arrow. Conversely, the final node denotes

the conclusion of the process and is depicted by a circle with a solid border.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1524

5. Forks and Joins: Forks are used to indicate points in the process where the flow of control

divides into multiple concurrent paths, enabling activities to be executed simultaneously.

Conversely, joins indicate points where concurrent paths merge back into a single flow of control.

6. Swimlanes: Swimlanes, whether vertical or horizontal, are partitions used to group activities

based on the entity or component responsible for them. They play a crucial role in organizing

activities and elucidating the roles of various actors or system components.

Fig 3.2 Represents Activity Diagram

The first step in preparing the code and data is to clean the code files and extract pertinent

features from them. This stage makes sure the data is prepared in a way that makes it easy to

analyze later. After that, any anomalies or odd patterns in the data are found using an outlier

detection technique. Outliers are marked for additional analysis if they are found. The prepared

data is then used to create a feature vector.

The primary characteristics that the machine learning model will employ for training and

analysis are captured by this feature vector, which acts as a numerical representation of the data.

The feature vector plays a vital role in converting the data into a format that the model can

process efficiently.

The prepared data and feature vector are used to train the machine learning model in the

following stage. Based on the input data, the model is trained to identify patterns and generate



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1525

predictions. The model is evaluated to determine its efficacy and performance once it has been

trained. Should the model fail to satisfy the intended standards, an advisor may be made

available to offer modifications and enhancements to the model.

4. OUTPUT SCREENS

Fig 4.1 Represents Initial User Interface

The output screen represents the basic initial user interface shows all Input box and Buttons.

Fig 4.2 Represents Uploading Code Repository

The output screen shows how the user interface is accessed and input is taken.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1526

Fig 4.3 Represents List Of Files Present In Code Repository

In above screen application read each code file and then process it and total java files found in

dataset is 213.

Fig 4.4 Represents Generating Feature Vector.

In above screen we can see all codes converted into vector where all words in codes will put as

column header and the count of each word and its average values will put in rows and now

vector is ready and now click on ‘Calculate Local Outlier Factor’ button to remove irrelevant

columns/attributes.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1527

Fig 4.5 Represents Calculation Local Outlier Factor.

In above screen wherever we are seeing 1 that column in feature vector is important and where

we are seeing -1 that column contains irrelevant attributes.

Fig 4.6 Represents Running Machine Learning Algorithms

The output screen shows running machine learning algorithms Accuracy, Precision, Recall and

FMeasure.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1528

Fig 4.7 Represents Comparison Graph.

In above graph we can see performance of each algorithm and in all algorithm random forest

giving better result and now machine learning models are ready and now click on ‘Refactor

Software Advisor’ button to get all code names which require refactor.

Fig 4.8 Represents giving list of class names which refactor

In above screen we got all class names which require refactor and now open first file called

AnnotationBinding.java and see is there any duplicate code.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1529

Fig 4.9 Represents duplicate code

In above screen we can see in same program two functions are there with same code and

different name as getKeys() in selected text and in next screen we have another method as

getKey()

Fig 4.10 getKeys() and getKeys() contains duplicate code so refactor require

5. CONCLUSION

This project proposes a novel learning method aimed at assisting developers in refactoring code

clones more effectively. The method automatically extracts features from detected code clones

and uses machine learning models to advise developers on which clones need refactoring and

their respective types. One key innovation is the introduction of a method to convert clone type

outliers into an "Unknown" clone category, which enhances classification accuracy. The study



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1530

includes an extensive comparative analysis and evaluation of the proposed method using state-

of-the-art classification models. The results demonstrate the effectiveness of the approach in

achieving high accuracy in automated advising for refactored clones. In future work, the authors

aim to expand the scope of their research to achieve further improvements. One potential

direction is to explore set classification and deep learning techniques to enhance the capabilities

of the model. These enhancements could lead to even more accurate and efficient refactoring

recommendations for developers dealing with code clones.

6.FUTURE ENHANCEMENTS

For future enhancements, this project could explore advanced methods for feature extraction

from code clones, such as using natural language processing (NLP) techniques to better

understand code semantics. Additionally, integrating advanced machine learning models like

convolutional neural networks (CNNs) or recurrent neural networks (RNNs) could improve the

accuracy of clone refactoring recommendations. Integrating the refactoring advisor tool into

popular Integrated Development Environments (IDEs) would provide developers with real-time

refactoring suggestions as they write code. Implementing a feedback loop for developers to

provide feedback on refactoring recommendations could improve the tool's accuracy over time.

Supporting a wider range of programming languages and automating the refactoring process

based on recommendations are also potential enhancements. Finally, optimizing the tool's

performance for handling large codebases would ensure its practicality in real-world software

development projects.

7. REFERENCES

[1] Y. Dang, S. Ge, R. Huang, and D. Zhang, ‘‘Code clone detection experience at microsoft,’’

in Proc. 5th Int. Workshop Softw. Clones, 2011, pp. 63–64.



ISSN: 2366-1313

Volume IX Issue I APRIL 2024 www.zkginternational.com 1531

[2] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler, ‘‘Automatic clone

recommendation for refactoring based on the present and the past,’’ in Proc. IEEE Int. Conf.

Softw. Maintenance Evol. (ICSME), Sep. 2018, pp. 115–126.

[3] S. Kodhai and S. Kanmani, ‘‘Method-level code clone modification using refactoring

techniques for clone maintenance,’’ Adv. Comput. Int. J., vol. 4, no. 2, pp. 7–26, Mar. 2013.

[4] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, ‘‘An empirical study of code clone

genealogies,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, 2005, pp. 187–196.

[5] N. Göde and R. Koschke, ‘‘Frequency and risks of changes to clones,’’ in Proc. 33rd Int.

Conf. Softw. Eng., 2011, pp. 311–320.

[6] W. Wang and M. W. Godfrey, ‘‘Recommending clones for refactoring using design, context,

and history,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014, pp. 331–340.

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘Refactoring support based on code clone

analysis,’’ in Proc. 135Int. Conf. Product Focused Softw. Process Improvement. Cham,

Switzerland: Springer, 2004, pp. 220– 233.

[8] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, and K. Words, ‘‘ARIES: Refactoring support

environment based on code clone analysis,’’ in Proc. IASTED Conf. Softw. Eng. Appl., 2004, pp.

222–229.

[9] Y. Higo, S. Kusumoto, and K. Inoue, ‘‘A metric-based approach to identifying refactoring

opportunities for merging code clones in a java software system,’’ J. Softw. Maintenance Evol.

Res. Pract., vol. 20, no. 6, pp. 435–461, Nov. 2008.

[10] M. F. Zibran and C. K. Roy, ‘‘A constraint programming approach to conflict-aware

optimal scheduling of prioritized code clone refactoring,’’ in Proc. IEEE 11th Int. Work. Conf.

Source Code Anal. Manipulation, Sep. 2011, pp. 105–114.


