

e-open sets and their Properties in Fuzzy Soft Topological Spaces

K. Kamala

Department of Mathematics, Pondicherry University, Kalapet-605107, Puducherry. Email: <u>krsaut@gmail.com</u>

Abstract

This paper aims to initiate and explore the properties of fuzzy soft e-open sets fs δ -preopen fs δ -semiopenand introduce and investigate the properties of fuzzy soft e-interior(fs δ -preinterior, fs δ -semi interior) and fuzzy soft e-closure in fuzzy softtopological spaces. Moreover, we study the characterizations of fuzzy soft e-continuous and fuzzy soft e-quotientmappings in fuzzy soft topological spaces.

Keywords:Fuzzy soft e-open(closed), Fuzzy soft δ pre-open, Fuzzy soft δ semi-open Fuzzy soft e-interior(closure), Fuzzy soft e-continuous, Fuzzy softe-quotient map.

AMS Subject Classification:54A40,03E72.

1.Introduction

Zadeh[10] introduced the concepts of fuzzy sets. Soft sets theory was introduced by Molodtsov [3]. The notion of a fuzzy soft set is investigated and discussed[4]. Chang[1] introduced and developed the concepts of fuzzy topology. In recent years, B. Tanay and M. B. Kandemir [5] much attention has been used to generalize the basic notions of fuzzy topology in a soft setting. In 2015, S. Hussain [6], introduced and explored the fuzzy soft semi-open(closed) sets by combining fuzzy soft sets and soft semi-open sets and investigated the properties of fuzzy soft semi-interior(closure) and fuzzy soft semi-open(closed) mapping. The concept of fuzzy soft pre-open and regular open sets was introduced by SabirHussain in 2016[7]. The concept of fuzzy e-open set wasintroduced by seenivasan.Vetal [9]. In this paper, we introduce the notion of fuzzy soft *e*-open set, fuzzy soft δ -semi open, fuzzy soft δ -pre open, fuzzy soft *e*-continuousand studied their properties and their characterizationsof these functions are investigated.

2. PRELIMINARIES

Throughout the present paper, X, Y, Z denote the fuzzy soft topological spaces(fsts). Let f_A be a fuzzy soft set of X. The fuzzy soft closure (resp. fuzzy soft interior) of f_A is denoted by fs cl(f_A)(resp. fs int(f_A) and A fuzzy soft set f_A is called fuzzy soft δ -open[8] if f_A =fs $cl_{\delta}(f_A)$ fuzzy soft δ -closure(fuzzy soft δ interior) set f_A is denoted by fs cl_ $\delta(f_A)$ (fs int_ $\delta(f_A)$. A fuzzy soft set f_A is called fuzzy soft δ -open[8](resp. fuzzy soft semi-open, fuzzy soft pre open if f_A =fs $cl_{\delta}(f_A)$ (resp. $f_A \leq fs cl(fsint(f_A))$) $f_A \leq (fsint(fscl(f_A)))$), the complement of fuzzy soft δ -open(resp. fuzzy soft semi-open, fuzzy soft pre open) set is called fuzzy soft δ -closed(resp. fuzzy soft semi-closed, fuzzy soft pre closed.

3.FuzzySoft *e*-open, fs δ -preopen, fs δ -semiopen sets

KG INTERNATIONAL

In this section we introduce fuzzy soft δ -semi open, fuzzy soft δ -pre open and fuzzy soft *e*-open sets in fuzzy soft topological spaces and study some of their properties

Definition 3.1. A fuzzy soft set f_A in a fuzzy soft topological space (X, τ, E) is called fuzzy soft δ -semi open (fs δ -semi open) (resp. fuzzy soft δ -pre open (fs δ -pre open) set iff $f_A \leq \text{fs}cl(\text{fsint}_{\delta}(f_A))$ (resp. $f_A \leq \text{fs} \text{int}(\text{fs} cl_{\delta}(f_A))$).

The complement of fuzzy soft δ -semi open(resp.fuzzy soft pre open) set is called fuzzy soft δ -semi-closed, fuzzy soft δ -pre closed set.

The union of all fs δ -semi open(resp.fuzzy soft δ -pre open) sets contained in a fuzzy soft set f_A in a fuzzy soft topological space X is called the fuzzy soft δ -semi interior(resp. fuzzy soft δ -pre interior) of f_A and it is denoted by fs int_{$\delta s}(f_A)$ (resp. fs int_{δp}(f_A)). The intersection of all fuzzy soft δ -semi closed(resp.fuzzy soft δ -pre closed)sets containing a fuzzy soft set f_A in a fuzzy soft topological space X is called the soft δ -semi closure (resp. fuzzy soft δ -pre closure) of f_A and it is denoted by fscl_{$\delta s}(f_A)$ (resp. fscl_{δp}(f_A))</sub></sub>

Theorem 3.2Let (X, τ, E) be an fsts and let f_A be a fuzzy soft set. Then the

following hold.

(i) $\operatorname{fsint}_{\delta p}(f_A) = f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))$

(ii) fs $cl_{\delta p}(f_A) = f_A \lor \text{fs } cl(\text{fsint}_{\delta}(f_A))$

(iii) fsint_{δs}(f_A) = $f_A \wedge fs cl(fsint_{\delta}(f_A))$

(iv) fs $cl_{\delta\delta}(f_A) = f_A \lor \text{fsint}(\text{fs} cl_{\delta}(f_A))$

Proof.(i) Since $\operatorname{fsint}_{\delta p}(f_A)$ is a fs δ preopen set, $\operatorname{fsint}_{\delta p}(f_A) \leq \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))$ and so fsint_{δp} $(f_A) \leq f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))$. Conversely, let f_A is any fs openset and now fsint(fs $cl_{\delta}(f_A) \leq \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A)))) \leq f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A)) \leq \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A)),$ since $f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))$ is a fs δ -preopen set contained in f_A Therefore $f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A)) \leq \operatorname{fsint}_{\delta p}(f_A)$. Hence $\operatorname{fsint}_{\delta p}(f_A) = f_A \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))$. (ii) Now $\operatorname{fsint}_{\delta}(f_A \vee \operatorname{fs} cl(\operatorname{fsint}_{\delta}(f_A))) \leq \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A \vee \operatorname{fs} cl(\operatorname{fsint}_{\delta}(f_A))))$ $\leq \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A) \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A)) = \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A) \leq f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A)))$, Hence by definition $f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))$ is a fs δ -preclosed set which contains f_A Therefore, fs $cl_{\delta p} \leq f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))$. Conversely, since fs f_A is fs δ -preclosed, we have fscl(fsint_{\delta}(f_A) \leq \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))). Conversely, since fs f_A is fs δ -preclosed, we have fscl(fsint_{\delta}(f_A) \leq \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))) = \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A)) and hence $f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))$ $\leq \operatorname{fscl}_{\delta p} \leq f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A)) = f_A \vee \operatorname{fscl}(\operatorname{fsint}_{\delta}(f_A))$. (iii) similar proof of (i) (iv) similar proof of (ii)

Definition:3.3A soft set f_A in a fsts (X, τ, E) is called(i) fuzzy soft *e*-open (fs*e*-open) set iff $f_A \leq \text{fsint}(\text{fs} cl_{\delta}(f_A)) \lor \text{fs} cl(\text{fsint}_{\delta}(f_A))$ (ii)fuzzy soft *e*-closed (fs*e*-closed) set iff $f_A \geq \text{fs} cl(\text{fsint}_{\delta}(f_A)) \lor \text{fsint}(\text{fs} cl_{\delta}(f_A))$ **Theorem 3** AL et (X, τ, E) be fuzzy soft topological spaces

Theorem:3.4Let (X, τ, E) be fuzzy soft topological spaces,

(i) Any union of fuzzy soft e-open sets is a fuzzysoft e-open set, and

(ii) Any intersection of fuzzy soft e-closed sets is a fuzzy soft e-closed set.

Definition:3.5In fsts X, a fuzzy soft set f_A is called the fuzzy soft e- interior if the union of all fs e-open sets contained in f_A and it is denoted by fs $\operatorname{int}_e(f_A)$ and a fuzzy soft set f_A is called the fuzzy soft e-closure if the intersection of all fuzzy soft e-closed sets containing a fuzzy soft set f_A and it is denoted by fs $\operatorname{cl}_e(f_A)$

Theorem:3.6In fstsX, every fs open set and fs δ -preopen(fs δ -semiopen) set is fse-open set. **Proof:** Let f_A be fs δ -preopen(fs δ -semiopen) set in X and $f_A \leq \text{fsint}(\text{fs} cl_{\delta}(f_A))$ ($f_A \leq \text{fs} cl(\text{fsint}_{\delta}(f_A))$) which implies $f_A \leq \text{fsint}(\text{fs} cl_{\delta}(f_A)) \vee \text{fs} cl(\text{fsint}_{\delta}(f_A))$. Therefore f_A is fse-open set in X. but the converse is not true as shown in the following example.

Example:3.7 Let $X = \{a, b, c\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$ $B = \{e_1, e_3\}$, $C = \{e_1\}$ and $D = \{e_2, e_3\}$ and let fuzzy soft sets $f_A = \{f(e_1) = \{a_{0,4}, b_{0,5}, c_{0,6}\}, f(e_2) = \{a_{0,1}, b_{0,2}, c_{0,3}\}, f(e_3) = \{a_0, b_0, c_0\}\}$ $f_B = \{f(e_1) = \{a_{0,5}, b_{0,6}, c_{0,1}\}, f(e_2) = \{a_0, b_0, c_0\}, f(e_3) = \{a_{0,1}, b_{0,4}, c_{0,3}\}\}$, $f_E = \{f(e_1) = \{a_{0,3}, b_{0,4}, c_{0,5}\}, f(e_2) = \{a_{0,4}, b_{0,5}, c_{0,1}\}, f(e_3) = \{a_{0,1}, b_{0,6}, c_{0,4}\}\}$ Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_E, f_A \lor f_B, f_A \land f_B, f_A \lor f_E, f_B \lor f_E, f_A \land f_E, f_E \lor (f_A \land f_B), f_B \lor (f_E \land f_A), f_A \lor (f_E \land f_B), f_E \lor f_A \lor f_B\}$ defined over (X, τ, E) . Now let us consider

 $g_E = \left\{ g(e_1) = \left\{ a_{0.4}, b_{0.6}, c_{0.5} \right\}, g(e_2) = \left\{ a_{0.5}, b_{0.5}, c_{0.2} \right\}, g(e_3) = \left\{ a_{0.3}, b_{0.6}, c_{0.4} \right\} \right\}$ be a fuzzy soft sets. Then the fuzzy soft set g_E is fuzzy soft e open sets in (X, τ, E) but it is not fuzzy soft δ -pre open and also not fuzzy soft δ -semi open set in (X, E, τ) .

Theorem:3.8Let f_A be a fuzzy soft set in a fsts X, then,

$$\begin{split} &\text{fsint}_{e}(f_{A}) = \text{fsint}_{\delta p}(f_{A}) \lor \text{fsint}_{\delta s}(f_{A}) \,. \\ &\text{Proof.It is obvious that, fsint}_{e}(f_{A}) \leq \text{fsint}_{\delta p}(f_{A}) \lor \text{fsint}_{\delta s}(f_{A}) \\ &\text{Conversely, from the definition we have,} \\ &\text{fsint}_{e}(f_{A}) \leq \text{fs} \ cl(\text{fsint}_{\delta}(\text{fsint}_{e}(f_{A}))) \lor \text{fsint}(\text{fs} \ cl_{\delta}(\text{fsint}_{e}(f_{A}))) \\ &= \text{fs} \ cl(\text{fsint}_{\delta}(f_{A})) \lor \text{fsint}(\text{fs} \ cl_{\delta}(f_{A})), \\ &\text{since fsint}_{e}(f_{A}) \text{ is fse-open set. By Theorem fs } \text{int}_{\delta p}(f_{A}) \lor \text{fs } \text{int}_{\delta s}(f_{A}) = \\ &(f_{A} \land \text{fsint}(\text{fs} \ cl_{\delta}(f_{A}))) \lor (f_{A} \land \text{fs} \ cl(\text{fsint}_{\delta}(f_{A}))) \\ &\geq f_{A} \land \text{fsint}_{e}(f_{A}) = \text{fsint}_{e}(f_{A}) \,. \, \text{Hence fsint}_{e}(f_{A}) = \text{fsint}_{\delta p}(f_{A}) \lor \text{fs } \text{int}_{\delta s}(f_{A}) \end{split}$$

Theorem:3.9Let f_A be any fuzzy set infsts X, then (i) fs $cl_e(f_A)^c = (\text{fs } int_e(f_A))^c$

(ii) $fsint_{e}(f_{A})^{c} = (fs cl_{e}(f_{A}))^{c}$.

Theorem:3.10Let f_A be a fuzz soft set of a fstsX. Then the following hold:

- (i) f_A is fs δ -preopen if and only if $f_A \leq \text{fsint}_{\delta p}(\text{fs} cl_{\delta p}(f_A))$
- (ii) f_A is fse-open if and only if $f_A \leq \text{fs } cl_{\delta p}(\text{fsint}_{\delta p}(f_A))$
- (i) f_A is fs δ -semiopen if and only if $f_A \leq \text{fsint}_{\delta s}(\text{fs } cl_{\delta s}(f_A))$

Proof: (i)Let f_A be fs δ -preopen. Then fs fs int $_{\delta_P}(f_A) = f_A$ and $f_A \leq \text{fs int}_{\delta_P}(\text{fs } cl_{\delta_P}(f_A))$. Conversely, let $f_A \leq \text{fsint}_{\delta p}(\text{fs} cl_{\delta p}(f_A))$. By Theorem3.2 we have, $f_A \leq \operatorname{fsint}_{\delta p}(\operatorname{fs} cl_{\delta}(f_A)) = \delta cl(F_A) \wedge \operatorname{int}(\delta cl(F_A)) = \operatorname{int}(\delta cl(F_A))$ Hence, f_A is fs δ -preopen. (ii) Let f_A be fs δ -semiopen. Then fs fs int $_{\delta s}(f_A) = f_A$ and $f_A \leq \text{fs int}_{\delta s}(\text{fs } cl_{\delta s}(f_A))$. Conversely, let $f_A \leq \text{fs int}_{\delta s}(\text{fs } cl_{\delta s}(f_A))$. By Theorem 3.2 we have, \leq fs int_{δs} (fs $cl_{\delta}(f_A)$) = fs $cl_{\delta}(f_A) \wedge$ fs $cl(\text{fsint}_{\delta}(\text{fs} cl_{\delta}(f_A))) \leq$ fs $cl(\text{fsint}_{\delta}(f_A))$ Hence, f_A is fs δ -semiopen. (iii) Let f_A be fse-open. Then $f_A \leq \text{fs } cl(\text{fsint}_{\delta}(f_A)) \vee \text{fsint}(\text{fs } cl_{\delta}(f_A))$. By theorem 3.2, we have $f_A \leq (\operatorname{fs} cl(\operatorname{fsint}_{\delta}(f_A)) \vee \operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A))) \wedge f_A$ $=(\operatorname{fs} cl(\operatorname{fsint}_{\delta}(f_A)) \wedge f_A) \vee (\operatorname{fsint}(\operatorname{fs} cl_{\delta}(f_A)) \wedge f_A) \leq \operatorname{fs} cl(\operatorname{fsint}_{\delta}(\operatorname{fs} \operatorname{int}_{\delta p}(f_A))) \vee \operatorname{fs} \operatorname{int}_{\delta p}(f_A))$ = fs cl_{δp} (fs int_{δp} (f_A)) Conversely, Let $f_A \leq \text{fs cl}_{\delta p}(\text{fs int}_{\delta p}(f_A))$. By Theorem 3.2, we have =fs int_{δp}(f_A) \lor fs cl(fsint_{δp}(f_A))) \le fs int_{δp}(f_A) \lor fs cl(fsint_{δ}(f_A)) $= f_A \wedge \text{fsint}(\text{fs} \, cl_\delta(f_A)) \vee \text{fs} \, cl(\text{fsint}_\delta(f_A)) \leq \text{fsint}(\text{fs} \, cl_\delta(f_A)) \vee \text{fs} \, cl(\text{fsint}_\delta(f_A))$ Hence, f_A is fse-open.

Theorem:3.10The following hold for a fuzzy soft set f_A of a space X:

(i) fs $cl_e(\text{fsint}_{\delta s}(f_A)) \leq \text{fs} cl_{\delta p}(\text{fsint}_{\delta s}(f_A))$ (ii) fs $\text{int}_e(\text{fs} \text{cl}_{\delta s}(f_A)) \geq \text{fsint}_{\delta p}(\text{fs} \text{cl}_{\delta s}(f_A))$ (iii) fs $\text{int}_{\delta p}(\text{fs} cl_e(f_A) \leq \text{fs} \text{ int}_{\delta p}(\text{fs} \text{ cl}_{\delta p}(f_A)))$ (iv) fs $cl_{\delta p}(\text{fsint}_e(f_A) \geq \text{fs} \text{ cl}_{\delta p}(\text{fs} \text{ int}_{\delta p}(f_A)))$ (v) fs $\text{int}_{\delta s}(\text{fs} cl_e(f_A) \leq \text{fscl}_e(f_A))$ (vi) fs $\text{int}_{\delta s}(\text{fs} cl_e(f_A) \geq \text{fsint}_e(f_A))$

Proof: (i) fs $cl_e(\text{fsint}_{\delta_s}(f_A)) = \text{fs} \operatorname{cl}_p(\text{fsint}_{\delta_s}(f_A)) \wedge \text{fs} \operatorname{cl}_{\delta_s}(\text{fs} \operatorname{int}_{\delta_s}(f_A))$ $= \operatorname{fsint}_{\delta_s}(f_A) \vee \operatorname{fs} \operatorname{cl}(\operatorname{fsint}_{\delta}(\operatorname{fsint}_{\delta_s}(f_A)) \wedge \operatorname{fsint}_{\delta_s}(f_A) \vee \operatorname{fsint}(\operatorname{fs} cl_{\delta}(\operatorname{fsint}_{\delta_s}(f_A)))$ $= \operatorname{fsint}_{\delta_s}(f_A) \vee (\operatorname{fsint}(\operatorname{fsint}_{\delta}(\operatorname{fsint}_{\delta_s}(f_A))) \wedge \operatorname{fsint}(\operatorname{fs} cl_{\delta}(\operatorname{fsint}_{\delta_s}(f_A))))$ $\leq \operatorname{fsint}_{\delta_s}(f_A) \vee \operatorname{fs} cl(\operatorname{fsint}_{\delta}(\operatorname{fsint}_{\delta_s}(f_A)))$ $\leq \operatorname{fs} cl_{\delta_p}(\operatorname{fsint}_{\delta_s}(f_A))$ (ii) similar proof of (i)

(iii) fs int $_{\delta p}(\text{fs } cl_e(f_A) = \text{fs int}_{\delta p}(\text{fs } cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A))$ = fs $cl_{\delta p}(f_A) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta p}(f_A))) \land \text{fs } cl_{\delta s}(f_A) \land \text{fs int}(\text{fs } cl_{\delta s}(f_A)))$ = fs $cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta p}(f_A)) \land (\text{fs } cl_{\delta s}(f_A)))$ = fs $cl_{\delta p}(f_A) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta p}(f_A)) \land (\text{fs } cl_{\delta s}(f_A)))$ = fs $cl_{\delta p}(f_A) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta s}(f_A))) \land (\text{fs } cl_{\delta s}(f_A)))$ = fs $int_{\delta p}(\text{fs } cl_{\delta p}(f_A)) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta s}(f_A)))$ $\leq \text{fs int}_{\delta p}(\text{fs } cl_{\delta p}(f_A)) \land \text{fs int}(\text{fs } cl_{\delta}(\text{fs } cl_{\delta s}(f_A)))$ (iv) similar proof of (iii) (v) fs int_{\delta s}(\text{fs } cl_e(f_A) = \text{fs int}_{\delta s}(\text{fs } cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A)) = fs $cl_{\delta p}(f_A) \land \text{fs } cl(\text{fs int}_{\delta}(\text{fs } cl_{\delta p}(f_A))) \land \text{fs } cl_{\delta s}(f_A) \land \text{fs } cl(\text{fs int}_{\delta}(\text{fs } cl_{\delta s}(f_A)))$ = fs $cl_{\delta p}(f_A) \land \text{fs } cl(\text{fs int}_{\delta}(\text{fs } cl_{\delta p}(f_A))) \land (\text{fs } cl_{\delta s}(f_A)))$ $\leq \text{fs } cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A) = \text{fs } cl_e(f_{\delta n}) \land (\text{fs } cl_{\delta s}(f_A)))$ $\leq \text{fs } cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A) = \text{fs } cl_e(f_{\delta n}) \land (\text{fs } cl_{\delta s}(f_A)))$ $\leq \text{fs } cl_{\delta p}(f_A) \land \text{fs } cl_{\delta s}(f_A) = \text{fs } cl_e(f_A)$ (vi) similar proof of (v) **Theorem:3.11**Let f_A be a subset of a fsts X. Then the following hold: (i) f_A isfs δ -preopen then $f_A \leq \text{fs } cl_e(\text{fs int}_{\delta p}(f_A))$ (ii) f_A isfs δ -semiopen and $f_A \leq \text{fs } cl_e(\text{fs int}_{\delta s}(f_A))$

(ii) f_A is fse-open then $f_A \leq \text{fs } cl_e(\text{fsint}_e(f_A))$

Proof :(i)Let f_A be $fs\delta$ -preopen. Then $fsint_{\delta p}(f_A) = f_A$ Consider, $f_A \leq fs cl_e(fsint_{\delta p}(f_A))$. By Theorem3.2 we have, $= fs cl_{\delta p}(fsint_{\delta p}(f_A)) \wedge fs cl_{\delta s}(fsint_{\delta p}(f_A))$ $= (fsint_{\delta p}(f_A)) \vee fs cl(fsint_{\delta}(fsint_{\delta p}(f_A))) \wedge (fsint_{\delta p}(f_A)) \vee fsint(fs cl_{\delta}(fsint_{\delta p}(f_A)))$ $= (fsint_{\delta p}(f_A)) \vee (fs cl(fsint_{\delta p}(f_A))) \wedge fsint(fs cl_{\delta}(fsint_{\delta p}(f_A))))$ $= (fsint_{\delta p}(f_A)) \vee (fs cl(fsint_{\delta p}(f_A)) \wedge fsint(fs cl_{\delta}(fsint_{\delta p}(f_A))))$ $= (fsint_{\delta p}(f_A)) \vee (fs cl(fsint_{\delta p}(f_A))) \wedge fsint(fs cl_{\delta}(fsint_{\delta p}(f_A))))$ $= (fsint_{\delta p}(f_A)) \vee fsint(fs cl_{\delta}(fsint_{\delta p}(f_A))) = fsint(fs cl_{\delta}(fsint_{\delta p}(f_A))) = int(\delta cl(F_A))$ Hence, f_A is $fs\delta$ -preopen. (ii) similar proof of (i) (iii) The proof follows from (i) and (ii)

4. Fuzzy soft e-continuous functions

Definition:4.1A mapping $\varphi: (X, \tau, E) \to (Y, \tau, E)$ is said to be a fuzzy soft *e*-continuous(fuzzy soft *e*-irresolute) if $\varphi^{-1}(f_A)$ is fuzzy soft *e*-open in τ_E for every fs open(fs e-open) set f_A in σ_E .

Theorem:4.2For a function $\varphi: (X, \tau, E) \to (Y, \tau, E)$, the following are equivalent:

(a) φ is fs e-continuous.

(b) $\varphi^{-1}(f_A)$ is fs e-closed set in τ_E for each fuzzy soft closed set f_A in τ_E .

(c) fs $cl_e(\varphi^{-1}(f_A)) \le \varphi^{-1}(\text{fs } cl(f_A))$ for every fs set f_A in σ_E .

157

- (d) $(\varphi(\text{fs } cl_e g_B)) \leq \text{fs } cl(\varphi(g_B))$ for every fs set g_B in σ_E
- (e) fs int_e(fs cl_e($\varphi^{-1}(f_A)$)) $\leq \varphi^{-1}(\text{fs } cl(f_A))$ for every fs set f_A in Y.
- (f) $\varphi(\text{fs int}_e(\text{fs cl}_e(g_B))) \le \text{fs } cl(\varphi(g_B))$ for every fs set g_B in X.

Proof: $(a) \Rightarrow (b)$: Let f_A be a fs closed set of σ_E . Then $f_A^{\ c}$ is fs open set of Y. By Definition, $\varphi^{-1}(f_A^{\ c})$ is fs e-open set in X. which implies $(\varphi^{-1}(f_A))^c$ is fs e-open set in X. Thus, $\varphi^{-1}(f_A)$ is afse-closed set of X. $(b) \Rightarrow (c)$: Let f_A be any fs set of Y. Since fs $cl(f_A)$ is fs closed set in Y, then $\varphi^{-1}(fs cl(f_A))$ is fse-closed in X. Therefore fs $cl_e(\varphi^{-1}(f_A)) \le fs cl_e(\varphi^{-1}(fs cl(f_A))) = \varphi^{-1}(fs cl(f_A))$. $(c) \Rightarrow (d)$: Let g_B be any fs set of X. By (c), $\varphi^{-1}(fs cl(\varphi(g_B))) \ge fs cl_e(\varphi^{-1}(\varphi(g_B)))$ $= fs cl_e(g_B)$. Thus $(\varphi(fs cl_e(g_B))) \le fs cl(\varphi(g_B))$. $(d) \Rightarrow (e)$: Let f_A be any fs set of Y and $g_B = \varphi^{-1}(f_A)$. Consider $fs cl(f_A) \ge \varphi(fs cl_e(\varphi^{-1}(f_A)))$ which implies $\varphi^{-1}(fs cl(f_A)) \ge fs cl_e(\varphi^{-1}(f_A)) \ge fsint_e(fs cl_e(\varphi^{-1}(f_A)))$. $(e) \Rightarrow (f)$: Let g_B be fs set in X and $f_A = \varphi(g_B)$, then $g_B = \varphi^{-1}(f_A)$. Consider fsint_e(fs cl_e(g_B)) \le fsint_e(fs cl_e(\varphi^{-1}(f_A))) \le \varphi^{-1}(fs cl(f_A)). Thus $\varphi(fs int_e(fs cl_e(g_B))) \le fs cl(\varphi(g_B))$.

 $(f) \Rightarrow (a)$: Let f_A be fsclosed set of σ_E . Consider $\varphi(\text{fs int}_e(\text{fs cl}_e(g_B)))$ $\leq \varphi(\text{fs int}_e(\text{fs cl}_e(\varphi^{-1}(f_A)))) \leq \text{fs } cl(\varphi(\varphi^{-1}(f_A))) \leq \text{fs } cl(f_A) = f_A$, which implies fs int_e(fs cl_e($\varphi^{-1}(f_A)$))) $\leq \varphi^{-1}(f_A)$. Thus $\varphi^{-1}(f_A)$ is fs e-closed set in X. Hence φ is fs econtinuous.

Definition:4.3 Let (X, τ, E) and (Y, σ, E) be fuzzy soft topological spaces. A mapping $\varphi: (X, \tau, E) \to (Y, \sigma, E)$ is said to be afuzzy soft e-quotient(fs δ -pre quotient,fs δ -semi quotient) map if φ is onto map and $\varphi^{-1}(f_A)$ is fuzzy open inX then for any f_A is a fuzzy softe-open(fs δ -preopen, fs δ -semiopen) set in Y.

Definition:4.4 A mapping $\varphi: (X, \tau, E) \to (Y, \sigma, E)$ is said to be a fs e-open map if the image of every fs open set in τ_E is fs e-open set in σ_E .

Theorem:4.5 If $\varphi: (X, \tau, E) \to (Y, \sigma, E)$ is an onto map, fuzzy soft e-continuous and fuzzy e -open map, then f is a fuzzy soft e-quotient map.

Proof.Let f_A be any fs open set in Y. This implies $\phi^{-1}(f_A)$ is a fs e-open set in X since ϕ is a fs e-continuous and surjetive, fs e open map, $\varphi(\varphi^{-1}(f_A)) = f_A$ is fs e-open set in Y Hence φ is fuzzy soft e-quotient map.

Theorem:4.6 Let $\varphi:(X,\tau,E) \to (Y,\sigma,E)$ be an onto, fuzzy e open map and fse-irresolute map. Let $\phi:(Y,\sigma,E) \to (Z,\delta,E)$ be a fuzzy soft e-quotient map. Then $\phi \circ \varphi$ is afs e-quotient map.

Proof. Let f_A be any fse-open set in Z. Then $\phi^{-1}(f_A)$ is a fsopen set as ϕ is

a fs e-quotient map. Since φ is fs e-irresolute, $\varphi^{-1}(\phi^{-1}(f_A)) = (\phi \circ \varphi)^{-1}(f_A)$ is

a fs e-open set in X. Then $\varphi^{-1}(\phi^{-1}(f_A))$ is fuzzy e open in X. Since φ is fse openmapand surjective, $\varphi(\varphi^{-1}(\phi^{-1}(f_A))) = \phi^{-1}(f_A)$ is fs openset in Y. Since φ is a fuzzy soft e-quotient map, f_A is a fuzzy soft e-open set in Z. Hence $\varphi \circ \varphi$ is a fuzzy soft e-quotient map.

Theorem 2.4 If $\varphi: (X, \tau, E) \to (Y, \sigma, E)$ is an onto map, fs e -open map and fs δ -pre quotient(fs δ -semi quotient) then f is a fs e-quotient map.

Proof. Let f_A be any fs open set in Y. This implies $\phi^{-1}(f_A)$ is a fsfs δ -preopen(fs δ -semiopen) set in X since ϕ is a fs δ -pre quotient (fs δ -semi quotient) and This implies $\phi^{-1}(f_A)$ fs e-open set and φ is surjetive, fs e open map, $\varphi(\varphi^{-1}(f_A)) = f_A$ is fs e-open set in YHence φ is fs e-quotient map.

References

[1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.

[2] S. M. Khalil, M. Ulrazaq, S A.Ghani, and A. F. Al-Musawi, Algebra and Baire in Fuzzy Soft Setting, *Advances in Fuzzy Systems*, 2018, 5731682, 1-10,

[3] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.

[4] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, J. Fuzzy Math., 9(2001), 589-602.

[5] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, *Computers and Mathematics with Applications*, 61(2011), 2952–2957.

[6]Sabirhussain "On weak and strong forms of fuzzy soft open sets", *FuzzyInformation and Engineering*, vol 8, issue 4, ,pp 451-463, Dec 2016.

[7]S. Hussain: On some generalized structures in fuzzy soft topological spaces, *Information Science Letters*, 4(3)(2015), 107-115.

[8]P. Mukherjee, R. P. Chakraborty and C. Park, On fuzzy soft δ - open sets and fuzzy soft δ - continuity, "Annals of FuzzyMathematics and Informatics," vol. 11, no. 2, pp. 327–340, 2016.

[9] V. Seenivasan and K. Kamala, "Fuzzy e-continuity and fuzzy eopensets, *Annals of FuzzyMathematics and Informatics*, vol. 8, no. 1, pp. 141–148, 2014.

[10] L.A. Zadeh, Fuzzy sets, Information and Control,8(1965), 338–353.