
ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 631

PATHFINDING VISUALIZER
1Ms. C.Archana, 2Mohd. ObaidUllah Ansari,3Shaik Aftabuddin,4Mohd Khan

1Assistant Professor&HOD, Dept.of CSE, Teegala Krishna Reddy Engineering College, Meerpet, Hyderabad,

2BTech student, Dept.of CSE, Teegala Krishna Reddy Engineering College, Meerpet, Hyderabad,

obaidansary4u@gmail.com

3BTech student, Dept.of CSE, Teegala Krishna Reddy Engineering College, Meerpet,

Hyderabad,aftab.shaik13@gmail.com

4BTech student, Dept.of CSE, Teegala Krishna Reddy Engineering College, Meerpet,

Hyderabad,mohdkhan150866@gmail.com

Abstract: A Pathfinding visualizer is a type of front-end visualization for the user to help

them understand the different types of Pathfinding algorithms. This algorithm is used to find

the shortest path of the algorithm between two different points using different techniques. A

visual Pathfinding Program helps you to create your own mazes and obstacles and then run

different algorithms on them. We can create our own mazes and our own type of puzzle and

generate different types of outcomes with it. Most of the students often try to study these

concepts from the provided notes from the college or online notes. But to do this, a lot of time

is utilized and it’s not time-saving. due to the computing power of the recent hardware, even

very entangled visualization involving 3D could be successfully implemented using

interpreted graphic script languages like JavaScript that are available to every web user

without any installation. The Languages used in this project are HTML, CSS, and JavaScript.

The Different types of algorithms used in this representation are Dijkstra's Algorithm

(weighted), Greedy Best-firstSearch (weighted), SwarmAlgorithm(weighted),

BidirectionalSwarmAlgorithm (weighted), Depth-first Search (unweighted).

Keywords: visualization, animation, algorithm, Invariant,Pathfinding

visualizer,SwarmAlgorithm,Dijkstra's Algorithm.

I. INTRODUCTION

Algorithm visualization (often called

algorithm animation) uses dynamic

graphics to visualize computation of a

given algorithm. First attempts to animate

algorithms date to mid-80’s (Brown, 1988;

Brown and Sedgewick, 1985), and the

golden age of algorithm visualization was

around the year 2000, when magnificent

software tools for an energetic algorithm

visualization (e.g., the language Java and

its graphic libraries) and plenty of

mailto:obaidansary4u@gmail.com
mailto:aftab.shaik13@gmail.com
mailto:mohdkhan150866@gmail.com


ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 632

powerful hardware were already available.

It was expected that algorithm

visualization would completely change the

way algorithms are taught. Many

algorithm animations had appeared, mostly

for simple problems like primary tree data

structures and sorting. There were even

attempts to robotize development of

animated algorithms and algorithm

visualization. Another guidance was to

develop tools that would allow learners to

prepare their own animations comfortably.

Instead of giving appropriate references to

algorithm animation papers, the reader is

directed to a super-reference (Algoviz,)

that brings a list of more than 650

authors/creator, some of them even with

29 references in algorithm animation and

visualization. Understanding Data

Structures and Algorithms (DSA), which

includes the arrangement of algorithm

theory, is a very challenging task in the

computer science field. DSA is one of the

most important subjects, but due to its

abstract character, it is also one of the most

difficult to master. The difficulty is

generally due to the algorithm, which is

derived from dynamic step-by-step

procedures. Programming classes are

included in both computer science and

information science curriculum. Their

objective is to educate students on

fundamental programming principles such

as control, methods of aggregation, sorting

algorithms, and structures, etc. pupils, to

support them in their learning. The

objective of novice programmers is to

implement the abstract process of

algorithm execution in a way or language

that will be understandable to the

computer.However, if a programmer wants

to ‘explain’ something to the computer, he

or she first has to understand it perfectly.

Namely, it is very difficult to understand

and learn complex algorithms such as

iterations, recursions or sorting algorithms

only by watching code lines or a flow chart.

On the contrary, if students can control

their own data sets and see the whole

process of algorithm execution, they are

able to draw conclusions from the resulting

data or in course of the algorithm

visualization.

We strongly understand that the reason is

relative basic: An algorithm operates on

some data (the input data, working

variables, and the output data). Usually, in

any particular scope of Computer Science,

there is a fundamental way of visualization

of data - graphs and trees are drawn as

circles linked by line segments, number

chain could be visualized as collections of

vertical bars, there are fundamental ways

of drawing matrices, vectors, real

functions, etc. An algorithm animation is

usually enforced by running the algorithm

slowly or in steps, and simply reorganize



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 633

the visual portrayal of the data in the

screen. A person who knows and

understands the algorithm in question can

see how the algorithm progresses, but a

learner user just sees visual objects moving

and changing their shapes and colours, but

finding out why the movie runs in that way

is usually too difficult for him or her.

II. LITERATUE SURVEY

To design effective software, every

software engineer needs to have a

thorough understanding of DSA.

Visualizers have a proven track record of

giving useful information to the user’s

comprehension.

The various Algorithm Visualizers

developed so far over the past few years

are:An Artificial intelligence search

Algorithm visualizer has been developed

in the past by Abu Naser in 2008.The tool

was deployed to solve the water jug

problem with strategic three operational

modes. A platform named JHAVEPOP

was made by Furcy David in 2009

Languages like C++ or Java having Data

Structures as Linked List can be visualized

using this platform. The platform creates

step by step visualization of the code

written by the scholar in C++ or Java.

A platform VisuAlgo was designed by Dr

Steven Halim in 2011 to productively

explain the foundation of distinct

algorithms to their students. Many

Advanced algorithms were present in this

platform as introduced in the book

'Competitive Programming which was co-

authored with his brother Dr Felix Halim.

The platform was limited to running only

on small devices. A platform for

Algorithm visualization was designed by

Shaffer C. et Al, in 2011 which was

deployed on the belief of group learning,

unlike other platforms that provided barely

a limited set of algorithms to be visualized.

Group deployed learning through forums,

discussions were promoted by the platform.

The idea of the operation for expanding

algorithm visualization tools by the

programmers perhaps upgrade the

future of algorithm visualizers was

proposed by Cooper Mathew et al, in his

publications in 2014. A platform named

VizAlgo was initiated by Simonak

Slavomair [15] in 2015.

Visualization of sorting algorithms was the

principal focus of the platform. It is

comprised of mainly two interlinked

components: the main component and

apair of individualistic parts. There were

many classes for helping in the execution

of code in the main segment while the

code for visualization was present in the

independent component. For the

Visualization of shortest path algorithms,

an e-learning software was developed by



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 634

Borissova D. in 2015. The platform

replenishes step by step visualization of

the shortest path algorithm execution by

conceiving, visualizing, and improving

different graph structures. Algorithm

visualizations were discussed and also an

aspect was introduced to choose the

particular algorithm deployed on the

performance and virtue of a certain

problem by Jonathan F. C. et al. in 2016.

Algorithm visualization on the mobile

platform was initiated by Supli A. A. et al.

in 2017. It throws light on

two main characteristics: the layout of the

User interface (UI) and its interactivity

with the user. The designing of an

algorithm visualizer was executed by

Romanowska K. et al. in 2018. Moreover,

discussions were made regarding

visualizer traits deployed on training and

reliability goals. A recursion tree visualizer

was generated by Bruno Papa et al. in

2020. The platform was meant to generate

a visualized recursion tree from a certain

recursion code. Reingold -Tilford's

algorithm was set up to place the nodes of

trees in a productive way. An integrated

platform named AlgoAssist has been

developed by Aniket B. Ghadge et al., in

2021. The tool contained a lab integration

feature which makes it more realistic for

both students and teachers.

III. PROPOSEDWORK

Pathfinding is that the best tool to know

the operating of any path finding rule or

it's conjointly useful as academic tool to

know the operating of the rule. There

square measure several downsides which

may be resolved by this type of tool.

Pathfinding is wide employed in virtual

environments, like laptop games. Most

pathfinding varieties involve shortest

pathfinding, that explores the quickest path,

however military science ways may be

sought for victimization varied properties.

This paper provides a way for locating safe

ways that maintain a balance between path

length and risks from hostile components,

likewise as a way to cut back computation

time employing a hierarchic search

strategy to reinforce operational potency.

Safe pathfinding uses the A* rule, relating

the influence map, that addresses the

degree of risk within the tract. The

searched path represents its attributes

concerning total length and accumulative

risk.

Pathfinding topic is widely used topic in

finding the best path or we can say shortest

path. .Many algorithm animations had

appeared, mostly for simple problems like

basic tree data structures and sorting when

you start the program the shortest path

from the start node represented in black to

the end node represented in red. Another



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 635

direction was to develop tools that would

allow students to prepare their own

animations easily. In this paper we get so

many. This application supports many

algorithms, with the help of that

algorithms finding the shortest path will be

easy. For that we use Dijkstra, A* search,

BFS etc.

The Implementation steps for our

system are as follows:

Step 1: Reading the displayed tutorial

shown by the webpage.

Step 2: Choose an algorithm from the list

of algorithms.

Step 3: Adding a bomb is optional

Step 4: Choose a maze from the 5 of the

given maze options given.

Step 5: Adjust the starting and ending

point in the maze.

Step 6: Click on “Visualize” and then the

given output will show inside the webpage.

Pathfinding Algorithms

In Pathfinding Algorithms, the user can

choose from a variety of mazes available

under the Generate Maze button or the

user can build its own maze through the

interactive platform. Then, the user can

select from various Pathfinding

Algorithms and then visualization of the

selected pathfinding algorithm is shown.

Dijkstra Algorithm

Named for its creator, Edsger Dijkstra,

Dijkstra’s algorithm was first proposed in

1959 and is the immediate precursor of A*.

The basic process is to assign each node at

a distance value, at first set to zero for the

initial node and infinity for all other nodes.

All nodes are marked as unvisited and the

initial, node is marked as the current node.

All nodes that are neighbors to the current

node are examined and their distance D

from the initial node is calculated through

the current node is calculated. If this new

distance D is less than the previously

recorded distance D for that node, the new

distance value replaces the old distance

value for that node. The neighbor node

with the lowest distance value is marked as

the new current node and the process

repeats until the target is marked as visited

or all nodes are marked as visited without

the target being found.

Figure 1.1: Dijkstra’s Algorithm B. A*



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 636

Fig.1 Dijkstra’s Algorithm

B. A* Algorithm

The A* search algorithm is generally

regarded as the de facto standard in-game

pathfinding. It was first described in 1968

by Peter Hart, Nils Nilsson, and Bertram

Raphael. For every node in the graph, A*

maintains three values: f(x), g(x), and h(x).

g(x) is the distance, or cost, from the initial

node to the node currently being examined.

h(x) is an estimate or heuristic distance

from the nodebeing examined to the target.

The value of g(x) is the distance from the

initial node to the current node through all

previous nodes traversed to get to that

point. Therefore, if A* is examining node

C as a possible next step in the path after

traversing node B, then the g(x) value of

node C is equal to the distance from the

origin A to node B, plus the distance from

node B to node C. This makes the g(x)

value for a given node equal to the actual

distance required to travel from the origin

to that node, through all preceding nodes.

h(x) is an estimate of the distance from the

current node to the node located at the

target. f(x) is the sum of g(x) and h(x).

A* also maintains an “open list,” which is

a list of all unvisited nodes, and a “closed

list,” or a list of visited nodes. At the

beginning of the search, all nodes are on

the open list, and the initial node is marked

as current. The values of g(x), h(x), and f(x)

are calculated for each of its neighbours. If

the new f(x) value of a node being

examined is less than the previous f(x)

value for that node, the new f value

replaces the old f value. The current node

is moved from the open list to the closed

list, the neighbour node with the lowest f(x)

value is marked as the new current node

and the process repeats until the target is

added to the closed list, or there are no

more nodes on the open list.

Fig.2 A* Search Algorithm

Breadth-First Search

The breadth-first search was discovered by

Moore in the context of finding paths

through mazes. BFS is a graph traversal

algorithm to explore a tree or a graph

efficiently. The algorithm starts with an

initial node (root node) and then proceeds

to explore all the nodes adjacent to it, in a

breadth-first fashion, as opposed to depth-

first, which goes down a particular branch

till all the nodes in that branch are visited.



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 637

Put simply, it traverses the graph level-

wise, not moving down a level till all the

nodes in that level are visited and marked.

It operates on the first-in-first-out (FIFO)

principle and is implemented using a

queue data structure. Once a node is

visited, it is inserted into a queue. Then it

is recorded and all its children’s nodes are

inserted into the queue. This process goes

on till all the nodes in the graph are visited

and recorded.

Fig.3 Breadth First Search Algorithm

Depth First Search

A version of the depth-first search was

investigated in the 19th century by French

mathematician Charles Pierre Trémaux as

a strategy for solving mazes. The DFS

search begins starting from the first node

and goes deeper and deeperexploring

down until the targeted node is found. If

the targeted key is not found, the search

path is changed to the path that was

stopped exploring during the initial search,

and the same procedure is repeated for that

branch. The spanning tree is produced

from the result of this search. The total

number of nodes in the stack data structure

is used to implement DFS traversal.

Fig.4 Depth First Search

Swarm Algorithm

The algorithm is essentially a mixture of

Dijkstra's Algorithm and A* Search; more

precisely, while it converges to the target

node like A*, it still explores quite a few

neighboring nodes surrounding the start

node like Dijkstra's. The algorithm

differentiates itself from A* through its use

of heuristics: it continually updates nodes'

distance from the start node while taking

into account their estimated distance from

the target node.

This effectively "balances" the difference

in total distance between nodes closer to

the start node and nodes closer to the target

node, which results in the triangle-like

shape of the Swarm Algorithm. We named

the algorithm "Swarm" because one of its

potential applications could be seen in a



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 638

video-game where a character must keep

track of a boss with high priority (the

target node), all the while keeping tracking

of neighboring enemies that might be

swarming nearby.

Fig.5 Swarm Algorithm

Bi-Directional Algorithm

Bidirectional search is a graph search

algorithm that finds a shortest path from an

initial vertex to a goal vertex in a directed

graph. It runs two simultaneous searches:

one forward from the initial state, and one

backward from the goal, stopping when

the two meet. The reason for this approach

is that in many cases it is faster: for

instance, in a simplified model of search

problem complexity in which both

searches expand a tree with branching

factor b, and the distance from start to goal

is d, each of the two searches has

complexity O(bd/2) (in Big O notation),

and the sum of these two search times is

much less than the O(bd) complexity that

would result from a single search from the

beginning to the goal.

Fig.6 Bi-Directional Algorithm

Analysis for Sorting Algorithms

Table I depicts the comparison between

various sorting algorithms that we have

implemented in our web-based

visualization tool. The algorithms are

analysed with 8 input values with average

runtime in seconds. From the table below

it is clear that Selection Sort consumes less

time as compared to other Sorting

Algorithms. Among all the algorithms

Bubble Sort will be the most time-

consuming algorithm as each adjacent

element are compared and are swapped as

per the requirements. The entire process

will be repeated for each traversal. Hence,

the time complexity of Bubble Sort is

worse than the others.

Table.1 Analysis of Algorithms



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 639

Analysis for Pathfinding Algorithms

An efficient algorithm is one that

calculates the shortest path with the fewest

number of node visitations. Among all the

Pathfinding Algorithms, Dijkstra’s

Algorithms is least efficient as it has no

method of cutting down on search space

and it made far more node visitations

during each path calculation phase.

Depending, on the situation A* and D* are

the most efficient pathfinding Algorithms.

IV. RESULTS

Fig.7 Visualizer Interface

After selecting the algorithm, enter “Visualize Dijkstra’s Algorithm” This is how it visualize

using the Dijkstra’s Algorithm. Given below is the screenshot representing it.



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 640

Fig.8 Visualization of Dijkstra’s

Here, the visualizer finds the shortest path between two points. We can see it visualizes the

starting point and the ending point.

Fig.9Pathfinder visualization

Here, we choose a type of maze called the “Recursive Division Method” It automatically

creates a maze shown in the above figure.



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 641

Fig.10 Maze Selection

We can even add a bomb to add a new starting point in the visualizer. So, by using the bomb

we can have a new stopping point before reaching the endpoint.

Fig.11 Adding Bomb

V. CONCLUSION

Different algorithms and different mazes

are used in this visualization in order to

visualize the pathfinding visualizations.

We can even add 6 types of mazes in this

visualizer to test different types of

outcomes. There are 5 different types of

Algorithms in need of visualization. Here,

the design and implementation of the

visualization in the algorithms is more

efficient and easier to understand. Just like

how we use it in maps and trees etc. These

algorithms can also be implemented in



ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 642

gaming devices to find the shortest path to

go from one place to another.

REFERENCES

1. JavaScript reference and documentation

retrieved from

https://devdocs.io/javascript/

2. A. Issa, M.O.A. Aqel, M. Khdair, M.

Abubaker, M. ElHabbash and M. Massoud,

“Intelligent Maze Solving Robot Based On

Image Processing and Graph Theory,”

2017 International Conference on

Promising Electronic Technologies

(ICPET), page 49-53, October 2017

3. Nawaf Hazim Barnouti, Sinan Sameer

Mahmood Al-Dabbagh and Mustafa Abdul

Sahib Naser, “Pathfinding in Strategy

Games and Maze Solving Using A Search

Algorithm,” Journal of Computer and

Communications Vol.04 No.11(2016),

Article ID:70460,11 pages

4. P Prasadu Peddi (2019), "Data Pull out

and facts unearthing in biological

Databases", International Journal of

Techno-Engineering, Vol. 11, issue 1, pp:

25-32.

5. N. Garg, “Lecture - 25 Data Structures

for Graphs [Video file]”, September

24,2008. Retrieved from

https://www.youtube.com/watch?v=hk5rQ

s7TQ7E

6. M. Chandra Wijaya, S. Tjiharjadi, and E.

Setiawan, “Optimization Maze Robot

Using A and Flood Fill Algorithm,”

International Journal of Mechanical

Engineering and Robotics Research Vol. 6,

No. 5, September 2017

7. C.E. Leiserson, T.H. Coremen, R.L.

Rivest and C. Stein, “Introduction to

Algorithms”, Third edition, Prentice Hall

of India, page 587-748, 2009

8. Silvester Dian Handy Permana, Ketut

Bayu Yogha Bintoro, Budi Arifitama and

Ade Syahputra, “Comparative Analysis of

Pathfinding Algorithms A , Dijkstra, and

BFS on Maze Runner Game” International

Journal Of Information System &

Technology Vol. 1, No. 2, (2018), pp. 1-8

9. Xiao Cui and Hao Shi, “A-based

Pathfinding in Modern Computer Games”

VOL.11 No.1, January 2011

10. Bi Yu chen, Chaoyang Shi and Shujin

Xiang, “Most reliable path-finding

algorithm for maximizing on-time arrival

probability” Pages 248-264 | Received 01

Jul 2015, accepted 21 Mar 2016, Published

online: 13 Apr 2016

11. N Srivani, Prasadu Peddi (2021), Face

Assessment Learned From Existing

Images In Order To Classify The Gender

Of The Images Based On Improved Face

Recognition, (TURCOMAT), Vol 12,

issue 6, pp: 5724-5735

https://www.turcomat.org/index.php/turkbilmat/article/download/12706/9162
https://www.turcomat.org/index.php/turkbilmat/article/download/12706/9162
https://www.turcomat.org/index.php/turkbilmat/article/download/12706/9162
https://www.turcomat.org/index.php/turkbilmat/article/download/12706/9162
https://www.turcomat.org/index.php/turkbilmat/article/download/12706/9162


ISSN: 2366-1313

Volume VIII Issue I FEBRUARY www.zkginternational.com 643

[12] J. Kennedy and R.C. Eberhart (1997),

“A discrete binary version of the particle

swarm algorithm” IEEE International

Conference on Systems, Man, and

Cybernetics. Computational Cybernetics

and Simulation.

[13] Prasadu Peddi (2019), "Data Pull out

and facts unearthing in biological

Databases", International Journal of

Techno-Engineering, Vol. 11, issue 1, pp:

25-32.


