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Abstract- We introduce a complex

generalization of Wigner time delay τ for

sub-unitary scattering systems. Theoretical

expressions for complex time delay as a

function of excitation energy, uniform and

no uniform loss, and coupling, are given.

We find very good agreement between

theory and experimental data taken on

microwave graphs containing an

electronically variable lumped-loss element.

We find that time delay and the determinant

of the scattering matrix share a common

feature in that the resonant behavior in Re[τ ]

and Im[τ ] serves as a reliable indicator of

the condition for Coherent Perfect

Absorption (CPA). This work opens a new

window on time delay in lossy systems and

provides a means to identify the poles and

zeros of the scattering matrix from

experimental data. The results also enable a

new approach to achieving CPA at an

arbitrary energy/frequency in complex

scattering systems.

1. Introduction

In this paper we consider the general

problem of scattering from a complex

system by means of excitations coupled

through one or more scattering channels.

The scattering matrix S describes the

transformation of a set of input excitations

|ψini on M channels into the set of outputs

|ψouti as |ψouti = S |ψini. A measure of how

long the excitation resides in the interaction

region is provided by the time delay, related

to the energy derivative of the scattering

phase(s) of the system. This quantity and its

variation with energy and other parameters

can provide useful insights into the

properties of the scattering region and has

attracted research attention since the seminal

works by Wigner [1] and Smith [2]. A

review on theoretical aspects of time delays
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with emphasis to solid state applications can

be found in [3]. Various aspects of time

delay have recently been shown to be of

direct experimental relevance for

manipulating wave fronts in complex media

[4–6]. Time delays are also long known to

be directly related to the density of states of

the open scattering system, see discussions

in [3] and more recently in [7, 8]. For the

case of flux-conserving scattering in systems

with no losses, the S-matrix is unitary and

its eigenvalues are phases e iθa , a = 1, 2, ...,

M. These phases are functions of the

excitation energy E and one can then define

several different measures of time delay, see

e.g. [3, 9], such as partial time delays

associated with each channel τa = dθa/dE,

the proper time delays which are the

eigenvalues of the Wigner-Smith matrix Qˆ

= i~ dS† dE S, and the Wigner delay time

which is the average of all the partial time

delays (τW = 1 M PM a=1 τa = 1 M T r[Qˆ]).

A rich class of systems in which properties

of various time delays enjoyed thorough

theoretical attention is scattering of short-

wavelength waves from classically chaotic

systems, e.g. billiards with ray-chaotic

dynamics or particles on graphs, e.g. such as

considered in [10]. Various examples of

chaotic wave scattering (quantum or

classical) have been observed in nuclei,

atoms, molecules, ballistic two-dimensional

electron gas billiards, and most extensively

in microwave experiments [11–16]. In such

systems time delays have been measured

starting from the pioneering work [17],

followed over the last three decades by

measurement of the statistical properties of

time delay through random media [18, 19]

and microwave billiards [20]. Wigner time

delay for an isolated resonance described by

an S-matrix pole at complex energy E0 − iΓ

has a value of Q = 2~/Γ on resonance, hence

studies of the imaginary part of the S-matrix

poles probe one aspect of time delay]. In the

meantime, the Wigner-Smith operator

(WSO) was utilized to identify minimally-

dispersive principal modes in coupled

multimode systems A similar idea was used

to create particle-like scattering states as

eigenstates of the A generalization of the

WSO allowed maximal focus on, or

maximal avoidance of, a specific target

inside a multiple scattering Time delays in

wave-chaotic scattering are expected to be

extremely sensitive to variations of

excitation energy and scattering system

parameters, and will display universal

fluctuations when considering an ensemble

of scattering systems with the same general
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symmetry. Universality of fluctuations

allows them to be efficiently described using

the theory of random Alternative theoretical

treatments of time delay in chaotic scattering

systems successfully adopted a semiclassical

approach, see [7] and references therein.

Despite the fact that standard theory of

wave-chaotic scattering deals with perfectly

flux-preserving systems, in any actual

realisation such systems are inevitably

imperfect, hence absorbing, and theory

needs to take this aspect into account [41].

Interestingly, studying scattering

characteristics in a system with weak

uniform (i.e. spatially homogeneous) losses

may even provide a possibility to extract

time delays characterizing idealized system

without losses. This idea has been

experimentally realized already in [17]

which treated the effect of sub-unitary

scattering by means of the unitary deficit of

the S-matrix. In this case consider the Q-

matrix defined through the relation S †S = 1

− (γ∆/2π)QUD, where γ is the dimensionless

‘absorption rate’ and ∆ is the mean spacing

between modes of the closed system. In the

limit of vanishing absorption rate γ → 0

such QUD can be shown to coincide with

the Wigner-Smith time delay matrix for a

lossless system, but formally one can extend

this as a definition of Q for any γ > 0. Note

that this version of time delay is always real

and positive. Various statistical aspects of

time delays in such and related settings were

addressed theoretically Experimental data is

often taken on sub-unitary scattering

systems and a straightforward use of the

Wigner time delay definition yields a

complex quantity. In addition, both the real

and imaginary parts acquire both negative

and positive values, and they show a

systematic evolution with energy/frequency

and other parameters of the scattering

system. This clearly calls for a detailed

theoretical understanding of this complex

generalization of the Wigner time delay. It is

necessary to stress that many possible

definitions of time delays which are

equivalent or directly related to each other in

the case of a lossless flux-conserving

systems can significantly differ in the

presence of flux losses, either uniform or

spatially localized. In the present paper we

focus on a definition that can be directly

linked to the fundamental characteristics of

the scattering matrix - its poles and zeros in

the complex energy plane, making it useful

for fully characterizing an arbitrary

scattering system. Note that S-matrix poles

have been objects of long-standing
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theoretical and interest in chaotic wave

scattering, whereas S-matrix zeroes started

to attract research attention only recently [26,

55–63]. Complex Wigner Time Delay. In

our exposition we use the framework of the

so-called “Heidelberg Approach” to wave-

chaotic scattering reviewed from different

perspectives . Let H be the N × N Hamil

tonian which is used to model the closed

system with ray-chaotic dynamics, W

denoting the N × M matrix of coupling

elements between the N modes of H and the

M scattering channels, and by A the N × L

matrix of coupling elements between the

modes of H and the L localized absorbers,

modelled as L absorbing channels. [67] The

total unitary S-matrix, of size (M + L) × (M

+ L) describing both the scattering and

absorption on equal footing, has the

following block form, see e.g.

The upper left diagonal M × M block of S(E)

is the experimentally-accessible sub-unitary

scattering matrix and is denoted as S(E). The

presence of uniform-inspace absorption with

strength γ can be taken into account by

evaluating the S-matrix entries at complex

energy: S(E + iγ) := Sγ(E). The determinant

of such a subunitary scattering matrix Sγ(E)

is then given by:

In the above expression we have used that

the Smatrix zeros zn are complex

eigenvalues of the non-selfadjoint/non-

Hermitian matrix H + i(ΓW − ΓA), whereas

the poles En = En − iΓn with Γn > 0 are

complex eigenvalues of yet another non-

Hermitian matrix H − i(ΓW + ΓA),

frequently called in the literature “the

effective nonHermitian Hamiltonian . Note

that when localized absorption is absent, i.e.

ΓA = 0, the zeros zn and poles En are

complex conjugates of each other, as a

consequence of S-matrix unitarity for real E

and no uniform absorption γ = 0. Extending

to locally absorbing systems the standard

definition of the Wigner delay time as the

energy derivative of the total phase shift we

now deal with a complex quantity:



ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1827

Equation (7) for the real part is formed by

two Lorentzians for each mode of the closed

system, potentially with different signs. This

is a striking difference from the case of the

flux-preserving system in which the

conventional Wigner time delay is expressed

as a single Lorentzian for each resonance

mode [69]. Namely, the first Lorentzian is

associated with the nth zero while the

second is associated with the corresponding

pole of the scattering matrix. The widths of

the two Lorentzians are controlled by system

scattering properties, and when Imzn → γ ±

0 the first Lorentzian in Eq. 7 acquires the

divergent, delta-functional peak shape, of

either positive or negative sign, centered at

E = Rezn. Note that the first term in Eq. 8

changes its sign at the same energy value.

These properties are indicative of the

“perfect resonance” condition, with

divergence in the real part of the Wigner

time delay signalling the wave/particle being

perpetually trapped in the scattering

environment. In different words, the energy

of the incident wave/particle is perfectly

absorbed by the system due to the finite

losses. The pair of equations (7, 8) forms the

main basis for our consideration. In

particular, we demonstrate in the Supp. Mat.

Section I [70] that in the regime of

wellresolved resonances Eqs. (7) and (8) can

be used for extracting the positions of both

poles and zeros in the complex plane from

experimental measurements, provided the

rate of uniform absorption γ is

independently known. We would like to

stress that in general the two Lorentzians in

(7) are centered at different energies because

generically the pole position En does not

coincide with the real part of the complex

zero Rezn. From a different angle it is worth

noting that there is a close relation between

the objects of our study and the phenomenon

of the so called Coherent Perfect Absorption

(CPA) which attracted considerable

attention in recent years, both theoretically

and experimentally [60, 62, 71– 73].

Namely, the above-discussed match between

the uniform absorption strength and the

imaginary part of scattering matrix zero γ =

Imzn simultaneously ensures the

determinant of the scattering matrix to

vanish, see Eq. (4). This is only possible

when |ψouti = 0 despite the fact that |ψini 6=

0, which is a manifestation of CPA, see e.g.

[55, 56]. Experiment. We focus on

experiments involving microwave graphs

[13, 62, 74, 75] for a number of reasons.

First, they provide for complex scattering

scenarios with well-isolated modes



ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1828

amenable to detailed analysis. We thus

avoid the complications of interacting poles

and related interference effects [76]. Graphs

also allow for convenient parametric control

such as variable lumped lossy elements,

variable global loss, and breaking of time-

reversal invariance. We utilize an irregular

tetrahedral microwave graph formed by

coaxial cables and Tee-junctions, having M

= 2 single-mode ports, and broken time-

reversal invariance. A voltage-controlled

variable attenuator is attached to one internal

node of the graph (see Fig. 1(a)), providing

for a variable lumped loss (L = 1, the control

variable ΓA). The nodes involving

connections of the graph to the network

analyzer, and the graph to the lumped loss,

are made up of a pair of Tee-junctions. The

coaxial cables and tee-junctions have a

roughly uniform and constant attenuation

produced by dielectric loss and conductor

loss, which is parameterized by the uniform

loss parameter γ. The 2-port graph has a

total electrical length of Le = 3.89 m, a

mean mode spacing of ∆ = c/2Le = 38.5

MHz, and a Heisenberg time τH = 2π/∆ =

163 ns. The graph has equal coupling on

both ports, characterized by a nominal value

of Ta = 0.9450 at a frequency of 2.6556

GHz. [77] Comparison of Theory and

Experiments. Figure 1 shows the evolution

of complex time delay for a single isolated

mode of the M = 2 port tetrahedral

microwave graph as ΓA is varied. The

complex time delay is evaluated as in Eq. 5

based on the experimental S(f) data, where f

is the microwave frequency, a surrogate for

energy E. Note that the (calibrated)

measured S-parameter data is directly used

for calculation of the complex time delay

without any data pre-processing. The

resulting real and imaginary parts of the

time delay vary systematically with

frequency, adopting both positive and

negative values, depending on frequency

and lumped loss in the graph. The full

evolution animated over varying lumped

loss is available in the Supplemental

Material [70]. These variations are well-

described by the theory given above. Figure

1(d) and (e) clearly demonstrates that two

Lorentzians are required to correctly

describe the frequency dependence of the

real part of the time delay. The two

Lorentzians have different widths in general,

given by the values of Imzn − γ and Γn + γ,

and in this case the Lorentzians also have

opposite sign. The frequency dependence of

the imaginary part of the time delay also

requires two terms, with the same
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parameters as for the real part, to be

correctly described. The data in Fig. 1(b)

also reveals that Re[τ ] goes to very large

positive values and suddenly changes sign to

large negative values at a critical amount of

local loss. For another attenuation setting of

the same mode it was found that the

maximum delay time was 337 times the

Heisenberg time, showing that the signal

resides in the scattering system for a

substantial time.

at which | det(S(f))| achieves its minimum

value at the CPA frequency fCPA. This

demonstrates that one or more eigenvalues

of the S-matrix go through a complex zero

value precisely as the condition Imzn − γ = 0

and f − Rezn = 0 is satisfied. Associated

with this condition |Re[τ (fCPA)]| diverges,

with corresponding large positive and

negative values of Im[τ (f)] occurring just

below and just above f = fCPA. Similar

behavior of Re[τ (f)] was recently observed

in a complex scattering system containing

re-configurable metasurfaces, as the pixels

were toggled [73]. Next we wish to estimate

the value of uniform attenuation γ for the

microwave graph. Using the unitary deficit

of the S-matrix in a setup in which the

attenuator is removed [17], we evaluate the
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uniform loss strength γ to be 3.73 × 10−3

GHz (see Supp. Mat. section III [70]).

Figure 2(b) summarizes the locations of the

S-matrix pole En and zero zn of the single

isolated mode of the microwave graph in the

complex frequency plane as the localized

loss is varied. When the S-matrix zero

crosses the Imzn = γ value, one has the

traditional signature of CPA. Note from Fig.

2 that the real parts of the zero and pole do

not coincide and in fact move away from

each other as localized loss is increased.

FIG. 2. (a) Fitted parameters Imzn − γ and

Γn + γ for the complex Wigner time delay

from graph experimental data. Also shown

is the evolution of | det(S)| at the specific

frequency of interest, fCPA, which reaches

its minimum at the zero-crossing point. Inset

shows the evolution of Rezn and En = ReEn

with attenuation. (b) Evolution of complex

zero and pole of a single mode of the graph

in the complex frequency plane as a function

of ΓA. The black crosses are the initial state

of the zero and pole at the minimum

attenuation setting. Insets show the details of

the complex zero and pole migrations.

Discussion. It should be noted that the

occurrence of a negative real part of the time

delay is an inevitable consequence of sub-

unitary scattering, and is also expected for

particles interacting with attractive

potentials [78]. The imaginary part of time

delay was in the past discussed in relation to

changes in scattering unitary deficit with

frequency [30]. Another approach to

defining complex time delay has been

recently suggested to be based on essentially

calculating the time delay of the signal

which comes out of the system without

being absorbed [73]. It should be noted that

this ad hoc definition of time delay is not

simply related to the poles and zeros of the

S-matrix. Moreover, a closer inspection

shows that such a definition of complex time

delay tacitly assumes that the real parts of

the pole and zero are identical. According to

our theory such an assumption is

incompatible with a proper treatment of

localized loss. We emphasize that the

correct knowledge of the locations of the
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poles and zeros is essential for

reconstructing the scattering matrix over the

entire complex energy plane through

Weierstrass factorization [79]. Through

graph simulations presented in Sup. Mat.

Section VII [70] we demonstrate that the

complex time delay theory presented here

also works for time-reversal invariant

systems, and for systems with variable

uniform absorption strength γ. Our results

therefore establish a systematic procedure to

find the S-matrix zeros and poles of isolated

modes of a complex scattering system with

an arbitrary number of coupling channels,

symmetry class, and arbitrary degrees of

both global and localized loss. Recent work

has demonstrated CPA in disordered and

complex scattering systems [60, 62]. It has

been discovered that one can systematically

perturb such systems to induce CPA at an

arbitrary frequency [73, 80], and this enables

a remarkably sensitive detector paradigm

[73]. These ideas can also be applied to

optical scattering systems where

measurement of the transmission matrix is

possible [81]. Here we have uncovered a

general formalism in which to understand

how CPA can be created in an arbitrary

scattering system. In particular this work

shows that both the global loss (γ), localized

loss centers, or changes to the spectrum can

be independently tuned to achieve the CPA

condition. Future work includes treating the

case of overlapping modes, and the

development of theoretical predictions for

the statistical properties of both the real and

imaginary parts of the complex time delay in

chaotic and multiple scattering sub-unitary

systems. Conclusions. We have introduced a

complex generalization of Wigner time

delay which holds for arbitrary

uniform/global and localized loss, and

directly relates to poles and zeros of the

scattering matrix in the complex

energy/frequency plane. Based on that we

developed theoretical expressions for

complex time delay as a function of energy,

and found very good agreement with

experimental data on a sub-unitary complex

scattering system. Time delay and det(S)

share a common feature that CPA and the

divergence of Re[τ ] and Im[τ ] coincide.

This work opens a new window on time

delay in lossy systems, enabling extraction

of complex zeros and poles of the S-matrix

from data.
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