
ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1570

BLOCKCHAIN TECHNOLOGYWITH OWNERSHIP

SHARING IN THE CLOUD
1PULIMADDI NAGENDRA, 2A. CHENNAKESAVAREDDY

1PG Scholar, Dept. ofMCA, Newton's Institute of Engineering, Macherla Guntur, (A.P)

2Assistant Professor, Dept. of CSE, Newton's Institute of Engineering, Macherla Guntur, (A.P)

Abstract: While cloud storage solutions claim to make it easy for users to collaborate and

share data, they insist that each file have a single owner who has complete control over who

has access to it. Thus, existing clouds do not care about the concept of shared ownership.

This may be a serious drawback in many collaborative situations, since one owner may

unilaterally remove data or withdraw access without informing the others. In this study, we

begin by explicitly defining a concept of shared ownership within the context of a paradigm

for controlling access to files. Our suggested shared ownership concept is then given in two

different conceivable forms. To guarantee that all access permits in the cloud have the

support of an agreed upon threshold of owners, our initial solution, Commune, relies on

secure file distribution and collusion resistant secret sharing. Because of this, Commune may

be deployed in pre-existing clouds without requiring any infrastructure upgrades. To achieve

agreement on an access control decision, we use blockchain technology in our second option,

which we've named Comrade. In contrast to Commune, Comrade needs just small

adjustments to current clouds in order to transfer access control choices that attain

agreement in the blockchain into storage access control rules. We use Amazon Simple

Storage Service to deploy our solutions and analyse their security and performance.

Keywords: Cloud security; Shared ownership; Distributed enforcement; Blockchain

technology.

I. INTRODUCTION

In spite of the cloud's claims to simplify

file sharing and collaboration, users will

still maintain control of their own data.

Each cloud-based file, in other words,

belongs to a single user, who has complete

discretion over whether or not to provide

access to any other users. However, many

cloud-based apps and partnerships don't

work well with individual ownership. In

order to work together on a research

project, many institutions and companies

can decide to create a central cloud

repository.

If everyone involved in the project

contributes to the study, it makes sense for

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1571

everyone to have some say in who has

access to the collaborative files. There are

two primary justifications for considering

this an improvement over private property.

To start, a single proprietor might misuse

his authority by deciding on security

measures on his own. Several stories of

someone denying others access to

previously shared files may be found in the

community. Second, even if owners are

prepared to elect and trust one of them to

make access control choices, that owner

may not be interested in being responsible

for collecting and accurately analysing the

policies of the other owners. Incorrect

assessments, for instance, might result in

social or financial fallout.

In contrast to traditional notions of

ownership, we offer the concept of shared

ownership, in which a group of n users

collectively own a file and any request to

access the file must be approved by a

minimum agreed-upon number of owners,

t. We point out that currently available

cloud solutions like Amazon S3 or

Dropbox only provide very limited access

control lists and do not enable shared

ownership restrictions. In a nutshell, they

don't care much for the idea of community

property. In addition, modern trust

management systems (such Sec PAL [1],

Key Note [2], and Delegation Logic [3])

that enable shared ownership rules handle

all access choices at a single Policy

Decision Point (PDP).

Since the person who administers the PDP

may alter the policy rules provided by the

owners and apply his own policies, this is

not ideal for implementing our shared

ownership model.

In this work, we investigate the issue of

how to implement shared ownership in a

decentralised manner across different

cloud storage services. We refer to this

method of enforcing rules wherein t of n

owners independently agrees to allow

access to a set of files in a shared

repository as "distributed enforcement." To

formally describe the provided

enforcement challenge and establish our

idea of shared ownership, we develop the

Shared Ownership file access control

Model (SOM). Then, to implement

distributed shared ownership regulations,

we suggest two different SOM model

instantiations.

Our prior work [4] is built upon in this

study. Specifically, we provide more

formally oriented information on the SOM

model. We also suggest a novel

implementation of the SOM model called

Comrade, which uses blockchain

technology to facilitate agreement on

security-related matters. Comrade, in

contrast to the Commune architecture

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1572

suggested in [4], necessitates the

participation of the cloud provider, who is

tasked with translating access control

choices that obtained agreement on the

blockchain into storage access control

rules. Comrade, on the other hand,

outperforms Commune by a wide margin.

We implement a smart contract

instantiating Comrade on the Ethereum

blockchain, link it to Amazon's cloud

storage [5], and evaluate its efficacy in

relation to file size and user count in

comparison to Commune [4]. Here's a

quick rundown of what we've contributed:

• We establish a new access control issue

of distributed enforcement of shared

ownership in existing clouds, and we

formalise the idea of shared ownership

inside a file access control model called

SOM.

• We suggest Commune as a first approach,

which enforces SOM in a distributed

manner and can be used with any public

cloud service. When using Commune, you

can be certain that (i) only those who have

been allowed read access by at least t of

the owners will be able to read files from

the shared repository, and (ii) only those

who have been granted write access by at

least t of the owners will be able to write

files to the shared repository.

• We suggest a second approach, which we

call Comrade, that uses the capabilities of

blockchain technology to arrive to an

agreement on access control decisions. If

you want to boost Commune's

performance, you'll need to make some

modest adjustments to your cloud so that it

can transform access control choices that

obtained consensus in the blockchain into

storage access control rules.

• We create working models of Commune

and Comrade and assess how they fare on

Amazon S3 with increasing file sizes and

user loads.

Here is how the rest of the paper is

structured. In Section II, we explain our

methodology for regulating access to files

when several people have a stake in them.

In Section III, we break down Commune

and examine its safety in depth. Section IV

provides an overview of Comrade and an

examination of its features.

In Section V, the effectiveness of

Commune and Comrade in Amazon S3 is

assessed. Additional observations on the

Commune and the Comrade are discussed

in Section VI.

After a review of relevant work in Section

VII, we draw a conclusion in Section VIII.

II. RELATEDWORKS

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1573

In theory, the top-of-the-line access control

systems available today, such as Sec PAL

[1], Key Note [2], and Delegation Logic

[3], may express t out of n rules. However,

these languages need a centralised PDP

component in order to assess their policies.

Furthermore, their PDPs are not

compatible with any external cloud service

deployment. These access control systems

need an administrator to develop and

administer access control policies, as

described in Section II. This implies that

under our system, a group of owners must

choose a single enforcer with absolute

control over their data.

The issue of joint ownership may be

solved, and access to a shared resource can

be managed by numerous parties, with the

help of Multi-Authority Attribute-Based

Encryption (MA-ABE) [18], [29]. While

MA-ABE has been proposed before, most

of the current implementations depend on

innovative cryptographic assumptions and

require costly operations because of the

need of a bilinear map.

Instead, we use CRSS in this study. CRSS

depends on standard assumptions and can

only support threshold policies since only

a cyclic group of prime order is sufficient.

We contend that threshold rules are

adequate for the purpose at hand, and that

our system may thus profit from the

minimal complexity of CRSS. In addition,

exactly like CRSS, MA-ABE can only be

used to control who has access to an

encryption key. Combining CRSS with

SFD is one alternative method for

regulating access to huge files.

Distributing a secret among a group of

shareholders through a secret sharing

method [30] ensures that only authorised

shareholders may piece together the secret.

Each set of shareholders with a cardinality

equal to or larger than the dealer-defined

threshold t is permitted to reconstruct the

secret in threshold secret sharing systems

[20], [31]. Secure secret sharing (i.e., the

secret cannot be retrieved by an

unauthorised group of shareholders) is

impracticable for exchanging huge data

due to its high computing and storage

requirements.

While Rabin's [11] concept for

disseminating information has a lower

overhead than [31], it offers no security

assurances in the event that just a few

shares are available (less than the

threshold). Krawczyk [32] is a hybrid of

Shamir's [31] and Rabin's [11] methods; in

[32], a file is encrypted using AES before

being distributed using Rabin's [11]

technique, and the encryption key is shared

using Shamir's [31] method.

Erasure-code based methods of

information distribution [16] are powerful

methods to improve the security of cloud-

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1574

based data storage [33], [36]. Ramp

systems [37] are a compromise between

the confidentiality assurances of secret-

sharing protocols and the speed with

which information may be dispersed.

Changes That Can Only Be Made One

Way: After being presented in [13], all-or-

nothing transformations have been studied

in [14], [38]. Most AONTs make use of an

encrypted key stored inside the data blocks

that are ultimately sent. The key may be

retrieved, allowing for the reversal of

individual blocks after all output data has

been generated. A Fast Fourier Transform-

like transformation was previously

mentioned by Rivest [13].

A "proof of encryption" for cloud-stored

data was subsequently built using Van Dijk

et al.'s [17] application of Rivest's

transformation. In this study, we develop

an AONT scheme by expanding on

Rivest's transformation to ensure that the

scheme retains its all-or-nothing nature

even if the opponent has access to the

secret key. When applied to the setting of

distributed storage systems, the

combination of AONT and information

dispersion proposed by Resch et al. [12]

provides both fault-tolerance (i.e.,

decoding needs only t out of n shares) and

data secrecy (i.e., confidentiality is ensured

with respect to parties that gather less than

t shares). A malicious actor that has cached

the encryption key may still decrypt

individual shares in [12]. By encrypting

the data beforehand and then post-

processing it with a linear transform,

Karama et al. [39] demonstrated that a

secure encryption mode with the same

guarantees as all-or-nothing

transformations is possible to build.

III PROTOTYPE DESIGN &

EVALUATION

In this section, we describe prototype

implementation of Commune and

Comrade integrated with Amazon S3 [5]

and

TRANSACTION FEES IN USD FOR

OUR COMRADE PROTOTYPE. evaluate

their performance.

A. Collective Deployment

To instantiate S, we make use of Amazon

S3; specifically, we set up individual

Amazon S3 accounts for each user in U,

into which they may transfer data and set

permissions at their discretion. Tokens are

sent from the file's author to the group of

owners OU using the access control

capabilities of Amazon S3. For simplicity's

sake, let's suppose that (i) each user creates

one "temporary" folder to which all other

peers have write access and (ii) each user

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1575

creates one "main" folder to which

endorsed tokens may be placed and

retrieved. The token is written to Oj's

temporary folder when the file's author

wishes to share it with the owner. Oj is the

only user with read access to the

temporary folder, therefore the newly

generated token is safe there. Now Oj may

approve the token for Ul by putting it in

his primary folder and giving Ul read

access to it.

Our Commune prototype provides a

multithreaded Java client-side interface to

Amazon S3-hosted repositories. The user's

local copy of the client communicates with

the repositories to add and remove files.

Rijndael [15] is used as the block cypher

for AON-FFT in the client's

implementation of SFD, and systematic

Reed-Solomon codes [16] are used to

disseminate data. We decided on a security

parameter of =128 bits and a symbol size

of 16 bytes.

Our prototype processes file unit actions in

smaller chunks, or "pieces," to improve

speed. Each new file unit is broken up into

smaller bits that may be handled in parallel.

One SFD output chunk per unit's

component parts is included in the token

for that unit. The reconstruction threshold t

is set in relation to the security parameter,

and the piece size w is selected such that

tow. To put it another way, this condition

guarantees that (i) a piece can be encrypted

in an integer number of ciphertext blocks

of bits, (ii) an encrypted piece can be

divided into an integer number of input

chunks for the Reed-Solomon encoder, and

(iii) the size of each chunk of the Reed-

Solomon encoder/decoder is at least bits.

B. Communist Party of China

In our implementation of Comrade, a

solidity-based smart contract5 on the

Ethereum blockchain communicates with a

python-based client using a shared

Amazon S3 bucket that is held by the

owner contract. We use an Amazon EC2

instance to host the PDP since Amazon

does not currently support blockchain-

aware PDPs. All decisions about S3

account access are made by the PDP in

light of the current blockchain state. All

file-related inquiries from our customers

are handled by the PDP.

Our smart contracts are deployed on the

public Ethereum blockchain. The basic

rationale of the Comrade works is reflected

in the owner contract that comes next.

Users cast their votes on the security

settings using Ethereum transactions. Keep

in mind that we save transaction costs by

doing experiments on a private Ethereum

[24] chain. The costs are shown in Table I

below. For 4 owners, the price of creating

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1576

our Ethereum owner contract is $3.056,

and for 8 owners, it is $5.47. It costs $0.08

to provide rights, however there is no

charge for adding a new file.

Each user adds their public key to the

PDP's owner contract in order to facilitate

authentication with the PDP. We use

compact elliptic curve cryptography (ECC)

due to the high cost of storing data inside

the blockchain (as ECC public keys are

more compact than RSA keys). In order to

get access to a file, a client must first

register its public key in a client certificate

and then establish a TLS connection to the

PDP. The PDP verifies the client's identity

with the help of the key and then makes

the choice about access based on a local

evaluation of a function of the owner

contract. Our Comrade prototype

disassembles units in the same way as

Commune does.

In our system, Amazon S3 is used to store

both the encrypted, shareable files and the

wrapped keys. It's important to note that

Comrade doesn't need any extra

redundancy for stored data, in contrast to

Commune. Therefore, the only extra space

that Commune has to keep are the wrapped

keys. The storage overhead for a file is

equal to 36 bytes times the number of

owners, or 36 bytes total. Most commonly

used files are at least 1 MB in size;

therefore, this is a very small storage hit.

C. Unit-of-Analysis Evaluation Write/Read

For a single file unit read and write, we

compare the efficiency of Commune and

Comrade across a range of parameters,

including (i) the piece size w (default

value w=128 bytes), (ii) the reconstruction

threshold t(default value t = 4), (iii) the

number of owners n (default value n = 10),

and (iv) the size of the file unit |Fi |

(default value |Fi |=10 MiB).

The performance of the system is

monitored while we gradually alter one of

the variables. We take the time to (i)

generate and upload Fi (labelled Write in

our plots) and (ii) get Fi (labelled Read)

for each setup. These times are calculated

from the moment an operation is initiated

until the result is accessible in the archives

(in the case of Write) or on the local disc

(in the case of Read). By transferring

randomly generated binary streams at each

iteration, we neutralise the cache's impact.

The Commune client retrieves endorsed

tokens from t randomly selected owners

during Read. A (t,n) systematic erasure

code, in case you forgot, produces t data

chunks and nt parity chunks. Our

assessment takes into consideration the

most likely situation, in which the chance

that a token includes a data chunk is

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1577

constrained by t n, such that no decoding is

required. However, the time needed to

endorse a token or submit a blockchain

transaction (i.e., the time necessary to

provide read rights) is not evaluated since

it is independent of the criteria under

consideration.

Figure 5 shows the outcomes of our

research. Figure 5(e) depicts how we track

the execution duration of Commune's

intermediate phases across many setups.

According to our findings, in Commune it

is cheaper to write a new unit than to read

it, but in Comrade the roles are inverted.

Write performance in Comrade is impacted

by the time spent uploading wrapped keys

for all owners, whereas the former effect is

caused by the cost of thread

synchronisation while storing decoded bits

on the local disc.

IV. DISCUSSION

Additional details on the architecture of

Commune and Comrade, as well as their

potential growth, are discussed below.

User-Friendly Transparency: As was

previously mentioned, Commune allows

its customers to centrally manage who has

access to what in the cloud.

As mentioned in Section V, the client

application is responsible for

implementing all Commune activities. It is

not necessary for users to "manually"

disperse or retrieve tokens. In reality, users

need simply declare the access policy for

the files they are appointed owners of and

determine the list of owners for the files

they generate.

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1578

In Comrade, the owner contract is made by

the owners themselves at the outset.

After then, the owner contract coordinates

the activities of all participants.

The encrypted text and its matching

wrapped key are transparently retrieved by

Comrade.

By adjusting t, we mean: For the sake of

uniformity in Commune, we do not permit

the modification of threshold t for each

given file F. Owners in O would need to

have fresh tokens calculated and

distributed if the threshold were to be

changed, say from t to t 0. After then, all O

token holders must swap over their old

tokens for the new ones. Since each holder

has complete control over their tokens,

there is no way to have them all update at

once. Some tokens may correspond to a

file version with threshold t, while other

tokens may correspond to a file version

with threshold t 0. This might lead to an

inconsistent state. As a result, Commune

does not support raising the bar. Comrade,

on the other hand, agrees that threshold t

may be changed by adjusting the owner

contract. The prerequisites for such a

modification, such as the consent of all

owners, are spelt out in the owner contract.

After the necessary steps have been taken

to implement a modification, the new

standard will be used in all subsequent

cloud PDP assessments of the owner

contract.

V Conclusion

Although current cloud systems are used

as communal storage areas, no such

concept of joint ownership is supported.

We see this as a major restriction since the

parties that are providing resources cannot

agree on how those funds should be

allocated.

In this work, we present SOM, a formal

access control model that describes a new

idea of shared ownership. Our suggested

shared ownership concept is then given in

two different conceivable forms. To

guarantee that all access permits in the

cloud have the backing of an agreed upon

threshold of owners, our initial solution,

Commune, relies on secure file

distribution and collusion-resistant secret

sharing. Since there is no need to alter the

underlying infrastructure, Commune may

be deployed in already agnostic clouds.

Our second approach, named Comrade,

uses blockchain technology to achieve

agreement when deciding who gets access.

Comrade differs from Commune in that it

necessitates the cloud to transform

consensus-based blockchain-based access

control choices into storage access control

ISSN: 2366-1313

Volume VIII Issue I JUNE 2023 www.zkginternational.com 1579

rules. However, compared to Commune,

Comrade proves to be more effective.

We propose that, with the proliferation of

personal clouds (e.g., [9], [10]), Commune

and Comrade are particularly well-suited

to the task of establishing distributed-

management repositories atop users'

individual clouds. As a result, we

anticipate that our results will inspire

further studies in this field.

REFERENCES

[1] M. Y. Becker, C. Fournet, and A. D.

Gordon, “Sec PAL: Design and Semantics

of a Decentralized Authorization

Language,” in Journal of Computer

Security (JCS), 2010, pp. 597–643.

[2] M. Blaze, J. Ioannidis, and A. D.

Keromytis, “Trust Management for IPsec,”

in ACM Transactions on Information and

System Security (TISSEC), 2002.

[3] N. Li, B. N. Grosof, and J.

Feigenbaum, “Delegation logic: A Logic-

based Approach to Distributed

Authorization,” in TISSEC, 2003.

[4] C. Soriente, G. O. Karame, H. Ritzdorf,

S. Marinovic, and S. Capkun, “Commune:

Shared ownership in an agnostic cloud,”

ser. SACMAT ’15, 2015.

[5] “Amazon Simple Storage Service(S3),”

http://aws.amazon.com/s3/.

[6] S. Ceri, G. Gottlob, and L. Tanca,

“What you always wanted to know about

Datalog (and never dared to ask),” in

Knowledge and Data Engineering, IEEE

Transactions on, 1989.

[7] Y. Gurevich and I. Neeman, “DKAL:

Distributed-Knowledge Authorization

Language ,” in CSF ’08.

[8] J. DeTreville, “Binder, a Logic-based

Security Language,” in Proceedings of

IEEE Symposium on Security and Privacy,

2002, pp. 105 – 113.

[9] “The Respect Network,”

https://www.respectnetwork.com/.

[10] “WD My Cloud,”

http://www.wdc.com/en/products/products.

aspx?id=1140.

[11] Prasadu Peddi (2017) “Design of
Simulators for Job Group Resource
Allocation Scheduling In Grid and Cloud
Computing Environments”, ISSN: 2319-
8753 volume 6 issue 8 pp: 17805-17811.

http://aws.amazon.com/s3/
https://www.respectnetwork.com/
http://www.wdc.com/en/products/products.aspx?id=1140.
http://www.wdc.com/en/products/products.aspx?id=1140.

