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Abstract: If you have a little amount of data that has to be stored, you may now utilize

distant servers and the cloud. Instead of offering financial incentives, these servers make their

customers' data retrievable at any time. A customer may verify the authenticity of their

outsourced data thanks to secure cloud storage techniques. Through the use of methods from

secure network coding, this study investigates the prospect of building secure cloud storage

for dynamic data. We demonstrate that certain secure network coding schemes may be used

to build efficient secure cloud storage protocols for dynamic data, and we build one such

protocol (DSCS I) on top of a secure network coding protocol. As far as we are aware, DSCS

I is the first secure cloud storage protocol for dynamic data built using secure network coding

methods, making it safe in the standard model. Append-only data has many practical uses,

even though generic dynamic data allows for unrestricted insertions, deletions, and updates.

Finally, we present prototype implementations of DSCS I and DSCS II so that their

performance may be evaluated. DSCS I is a general-purpose secure cloud storage protocol,

therefore we built DSCS II to address the unique challenges of append-only data.

Keywords: Secure cloud storage, network coding, dynamic data, append-only data, public

verifiability.

I. Introduction

With the advent of cloud computing, cloud servers provide to their customers (cloud users)

numerous services that include delegation of vast amount of compute and outsourcing

massive quantity of data. For example, a client with a smart phone with a low-performance

CPU or limited storage cannot do intensive calculation or store huge volume of data. Under

such conditions, she may outsource her computation/storage to the cloud server. In case of

storage outsourcing, the cloud server stores enormous data on behalf of its customers (data

owners) (data owners). However, in order to free up space, a malicious cloud server might

erase part of the client's data (those are seldom visited). Secure cloud storage protocols (two-

party protocols between the client and the server) give a means to check whether the server

maintains the client’s data unhampered. Based on the nature of the outsourced data, these

protocols are categorised as: secure cloud storage protocols for static data (SSCS) [2], [3], [4]
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and for dynamic data (DSCS) [5], [6], [7], [8]. For static data, the customer cannot update her

data after the original outsourcing (e.g., backup/archival data). Dynamic data are more

general in that the customer may adjust her data as frequently as required. In secure cloud

storage protocols, the client may audit the outsourced data without reading the complete data

file, and yet be able to identify undesired modifications in data done by a hostile server.

While conducting an audit, the client will submit a random challenge to the server, which will

then construct proofs of storage (using the data it has stored) that answer the question posed

by the client. If an audit can be performed by any third party auditor (TPA) using public

parameters, the cloud storage protocol is considered publicly verifiable; otherwise, it is

considered privately verifiable, meaning that the auditor needs to know some secret

information about the client in order to verify the protocol. The entities involved in a secure

cloud storage technique and the interaction among them are represented in Figure 1.

Figure 1: The architecture of a secure cloud storage protocol

Each node along a network route (other than the transmitter and recipient nodes) performs

packet fusion in a network coding protocol [9, 10]. In comparison to store-and-forward

routing, these protocols have better throughput, efficiency, and scalability; yet, they are

vulnerable to pollution attacks in which malevolent intermediary nodes introduce erroneous

packets. Because of the propagation of these packets, the receiving node may never be able to

decode the original file transmitted by the sending node. To counteract such assaults,

cryptographic methods are used by secure network coding (SNC) protocols. In these systems,

the sender of a packet verifies its authenticity by appending a unique tag to it. These

authentication tags are produced with the use of homomorphic message authentication codes

(MACs) [11] or homomorphic signatures [12], [13], [14], [15]. As a result of the



ISSN: 2366-1313

Volume VII Issue II NOVEMBER 2022 www.zkginternational.com 308

homomorphic characteristic, a middle node may merge several incoming packets (and their

tags) into a single packet and tag. In this paper, we adopt a fresh approach to the issue of how

to build a secure cloud storage protocol for ephemeral data (DSCS). We look at the

possibility of employing an SNC protocol as the basis for a robust DSCS protocol. The

authors Chen et al. [16] find that safe cloud storage may be tied to secure network coding. In

particular, they demonstrate that a secure cloud storage system for static data may be built by

using some of the methods involved in an SNC protocol. However, its design is inadequate

for applications that need frequent distant data updates (insertion, deletion, or modification)

because of the inability to manage dynamic data. More research on an effective DSCS build

with a secure network coding (SNC) protocol is required. Distributed storage systems [17, 18]

employ network coding methods to disperse client data among numerous servers. However,

its primary goal is to lessen the amount of time spent on repairs if several servers go down at

once. By contrast, we investigate whether or not we can use the algorithms in an SNC

protocol to build a safe and effective cloud storage system for changing data (for a single

storage server).

II. Literature survey

In terms of IT infrastructure, cloud computing is seen as the way of the future. In doing so, it

shifts the workload away from local machines and onto remote servers and huge data centres,

where the security and reliability of data and service management are less certain. Since no

one has faced something like this before, there are certain to be numerous unknown security

risks associated with it. There is already research on the issue of how to best guarantee the

security of data stored in the cloud. In this paper, we focus on the problem of facilitating the

cloud client's third-party auditor's (TPA) verification of the authenticity of the cloud's

dynamic data. The introduction of TPA removes the need for the customer to verify the

security of his cloud-stored data by conducting audits on his behalf.

Since services in Cloud Computing are not restricted to archive or backup data solely, the

support for data dynamics through the most common types of data operation, including block

modification, insertion, and deletion, is also a key step toward reality. Prior efforts on remote

data integrity assurance frequently lack either public audit capabilities or support for dynamic

data operations; this study provides both. By first highlighting the challenges and potential

security issues of direct extensions with fully dynamic data updates from previous works, the

current system demonstrates how to build an elegant verification scheme for the smooth

integration of these two prominent features into our protocol design.
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In particular, we enhance the pre-existing proof of storage models by modifying the

traditional Merkle Hash Tree design for block tag authentication, allowing for more effective

data dynamics. In order to expand our primary finding into a multiuser situation, where TPA

may carry out numerous auditing jobs concurrently, we investigate the concept of bilinear

aggregate signature.

III. Methods and Materials

Distributed storage systems [17, 18] employ network coding methods to disperse client data

among numerous servers. However, its primary goal is to lessen the amount of time spent on

repairs if several servers go down at once. By contrast, we investigate whether or not we can

use the algorithms in an SNC protocol to build a safe and effective cloud storage system for

changing data (for a single storage server). Append-only data (where new data related to a

data file are placed only at the end of the file) find several uses, even though dynamic data

are general in the sense that they permit arbitrary update (insertion, deletion, and

modification) actions. These programmes typically preserve historical records while also

keeping current records by appending the latter to the former. CCTV footage, financial

ledgers, medical records, append-only database information, and so on are all examples of

append-only data. Additional log structures may benefit from append-only data storage as

well (e.g., certificates are stored using append-only log structures in certificate transparency

schemes [39]). Many such uses call for a cloud server to safely store the massive amounts of

data, with append as the sole allowed update method. In this case, the system investigates the

feasibility of offering a general construction of a DSCS protocol from any SNC protocol,

even if secure cloud storage strategies for generic dynamic data work for append-only data as

well. We provide a thorough breakdown of the difficulties inherent in a generic design and

single out a few SNC protocols well-suited for use in creating effective DSCS procedures.

By starting with an SNC protocol, the proposed approach generates a publicly verifiable

DSCS protocol (DSCS I) [15]. With DSCS I, clients may easily make changes (including

insertions, deletions, and modifications) to their data that has been outsourced. The benefits

and drawbacks of DSCS I are discussed, both in terms of its (asymptotic) performance and its

practical applicability. The formal security specification of a DSCS protocol and proof of the

security of DSCS I am provided by the proposed s system. DSCS I (which is based on [15])

may be used to append-only data since it treats them as a particular form of generic dynamic

data. While we do find a few SNC protocols that aren't well suited to constructing secure
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cloud storage for general dynamic data, we also show that they can be used to create efficient

secure cloud storage protocols for append-only data. Using an SNC protocol described by

Boneh et al. [13], we develop a publicly verifiable secure cloud storage protocol (DSCS II)

for append-only data.

IV. Security Model

DSCS I offer the guarantee of dynamic provable data possession (DPDP) [5]. The untrusted

server (acting as a PPT adversary A) can be malicious exhibiting Byzantine behavior and

corrupt the client’s data arbitrarily, i.e., it can apply updates of its choice. The data possession

game between a challenger C and A is as follows. • C runs KeyGen to generate (sk, pk) and

gives pk to A. A selects a file F associated with the identifier fid to store. C processes F to

form another file F 0 with the help of sk and returns F 0 to A. C stores only some metadata to

verify the future updates. • A adaptively chooses a sequence of operations defined by

{opi}1≤i≤q1 (q1 is polynomial in the security parameter λ), where opi is an authenticated

read, an authenticated update (write) or an audit. C executes these operations on the file

stored by A. For an update operation defined by (updtype, info), C verifies the proof (sent by

A) by running VerifyUpdate and updates her metadata if and only if the proof passes

verification. A is notified about the result of verification for each opi . A can corrupt the file

in an arbitrary way during the execution of these operations, i.e., it can update any part of the

file that need not be the same as those specified in {opi}1≤i≤q1 . • Let F ∗ be the final state of

the file after q1 operations. C has the latest metadata for the file F ∗ . C challenges A with a

random challenge set Q, and A returns a proof T = (T1, T2) to C. A wins the game if the

proof passes verification. C can challenge A for q2 (polynomial in λ) times to extract (at least)

the challenged vectors of F ∗

V. Performance Analysis of DSCS I

DSCS Effectiveness Exponentiation costs account for the bulk of DSCS I's computational

price tag (modulo N). The client must execute a multi-exponentiation [38] and take the e-th

root of the result in order to create x in the tag for a vector. There are two multiplications by

exponents needed by the server in order to compute x. A verifier using Verify must do both a

multi-exponentiation and a single-exponentiation in order to validate a proof (see Eqn. 4).

The features of a skip list [34] mean that it is very likely that the time needed to construct a

proof of concept (connected to a rank-based authenticated skip list) and the time needed to
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validate that proof of concept are both O(log m). To further understand how DSCS I stack up

against other PDP schemes, we compared it using audit-related metrics in Table 1.

Table 1: Comparison among secure cloud storage protocols achieving PDP

guarantees

Secure cloud

storage

Type of

Data

Computation

for verifier

Computation

for server

Communication

complexity

Public

verifiability

Security

model

P [2] Static O(1) O(1) O(1) Yes

Random oracle

model [36]

Scalable PDP [23] Dynamic O(1) O(1) O(1) No

Random oracle

model

DPDP I [5] Dynamic O(log m~) O(log m~) O(log m~) Yesx Standard model

DPDP II [5] Dynamic O(log m~)

O( m~ log

m~)? O(log m~) Yesx Standard model

Wang et al. [6] Dynamic O(log m~) O(log m~) O(log m~) Yes

Random oracle

model

Wang et al. [24] Dynamic O(log m~) O(log m~) O(log m~) Yes

Random oracle

model

FlexDPDP [37] Dynamic O(log m~) O(log m~) O(log m~) Yesx Standard model

Chen et al. [16] Static O(1) O(1) O(1) Yes Standard model

DSCS I (in this

work) Dynamic O(log m) O(log m) O(log m) Yes Standard model

DSCS II (in this

work) Dynamic{ O(1) O(1) O(1) Yes

Random oracle

model

We highlight that the current secure cloud storage technique for static data [16], which is

based on the same SNC protocol [15], also has the first two drawbacks. This work, however,

investigates the possibility that an SNC protocol may be converted into a DSCS protocol.

Better DSCS protocols may be derived from more space-efficient SNC protocols. Following

this, we propose a new, more efficient DSCS protocol (DSCS II) for append-only data.
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DSCS II's Effectiveness The client must execute a multi-exponentiation in order to create the

value of an authentication tag for every vector t while performing the Outsource algorithm

(see Eqn. 5). To determine t, the server needs to do a single multiplication by exponent (see

Eqn. 7 in the algorithm Prove). In order to verify a proof using the method Verify, the verifier

must do two multi-exponentiations and two pairing operations (see Eqn. 8). It is important to

note that in DSCS II, all three parameters are fixed (independent of m): the proof size, the

time needed to create a proof, and the time needed to verify a proof. Table 1 displays the

results of a variety of audits using DSCS II and various efficiency metrics.

VI. Evaluation Methodology

We use a 2.5 GHz Intel i5 CPU and 8 GB of RAM to quantify server-side storage costs,

client-side communication costs, and calculation costs. OpenSSL 1.0.2 [40] is used for DSCS

I cryptographic operations, whereas the PBC 0.5.14 [41] library is used for DSCS II

cryptographic operations. DSCS I and DSCS II employ different libraries in their

implementations; hence the time it takes to perform cryptographic operations that are

otherwise comparable (such as random number generation) differs across the two protocols.

Our tests show that m vectors (or data blocks) of size n 0 are stored in a single file. One thing

to keep in mind is that under DSCS I and DSCS II, each data block is made up of n data

segments. Thus, n 0 = n × sseg, where sseg is the size of each data segment. In our tests, we

always use a block size of 500 KB (n 0); hence the number of blocks changes with file size

(m). We experiment with file sizes 1, 10, 50, 200 and 500 MB, except in the comparison with

[16] given. We take the security parameter λ = 112 which is same as that considered in [16].

Each experiment was repeated 50 times to get the average findings presented below. Here, we

just account for the number of tags and the amount of proofs when calculating the total cost

of communication during an update (and audit). We point out that these algorithms must also

share a block of information (of constant size). We ignore the block size for the sake of

simplicity in making comparisons.

1. Experimental Results for DSCS I

N = pq is a 2048-bit RSA modulus that gives 112-bit security, where p and q are 1024-bit

primes. The client incurs a continuous storage cost to keep her private key and certain

metadata (the root-digest of the rank-based authenticated skip list) in memory. However, the

server must also save the data file and all the authentication data, such as the skip list and the



ISSN: 2366-1313

Volume VII Issue II NOVEMBER 2022 www.zkginternational.com 313

tags. This extra data storage space is shown. We see that the proportion of extra storage is

essentially constant as the file size rises, assuming a fixed block size n0. As a result, even

after accommodating dynamic activities, there is a negligible storage burden on the server.

Communication Cost: During an audit, the communication cost relies on the number of

challenged blocks (i.e., jQj) which is a tiny constant. When a client makes a query, the server

will respond with proofs. The proof size is proportional to the sum of the sizes of the blocks

being searched and the size of a constant aggregated block (together with the size of an

aggregated tag). Due to the second component, the proof size might shift depending on the

number of blocks that were queried. For the sake of our comparison of DSCS I's performance

to that of [16], we do not include the block size into the total cost (similar to [16]). We see

that DSCS I uses a very little amount of bandwidth despite its data-dynamic nature.

The amount of money spent on messages during updates varies with the kind of update being

performed. For an insertion, the client transmits to the server an index, a public parameter h,

the new data block together with its tag. For a modification, client just has to submit an index,

the changed block and its tag. For a deletion, communication comprises the index of the

block to be erased. The server provides the client with a validated update at regular intervals.

On each iteration, the communication cost is recorded. The Price of Computing: We present

the calculation cost for the following stages of DSCS I: outsourcing (client), challenge

creation (client), proof generation (server), proof verification (client), and updates on the

outsourced file (client and server) (client and server). The time for outsourcing comprises

breaking the file into chunks, tag calculation and generating a skip list.

It's clear that the first time you outsource a data file; it's going to cost you a lot of processing

resources. It expands as the file size rises. It relies on numerous aspects including the block

size n0, the number of blocks m in a file and the number of segments n in each block. If we

have a data file with segments of varying sizes, and assume that n0 is big, then the amount of

time required to generate a single tag will grow proportionally with the number of segments

in the block (i.e., more components in each vector). However, if n0 is assumed to be small,

the time required to compute all the tags (and create the skip list) grows exponentially with

the rise in the number of blocks m and the number of tags. Accordingly, a good value strikes

a balance between them.

Due to the lack of computing power required, the time required to generate challenges is

minimal. The number of blocks searched rather than the size of the file is what determines

how long it takes to generate a proof (jQj). The time required to generate an aggregated block
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(and tag) and the time required to compute the skip-list evidence for each challenged block

are both factored in. Time spent confirming proofs include checking the skip-list proof for

each challenged block, as well as comparing the aggregated block with the aggregated tag.

VII. Conclusion

The work presented here proposes a secure cloud storage protocol for dynamic data (DSCS I)

that makes use of secure network coding (SNC). We believe this to be the first publicly

verifiable and standard-model-secure SNC-based DSCS protocol. We have covered some of

the difficulties encountered in developing a functional DSCS protocol from a simple SNC

one. We have also discovered some shortcomings of a secure cloud storage mechanism for

changing data that is based on SNC. Nonetheless, the underlying SNC protocol does impose

some of these constraints. It is possible that a more effective SNC protocol will lead to a

more effective DSCS protocol. We have also created an effective DSCS protocol (DSCS II)

for append-only data and found certain SNC methods that work well with this kind of data.

As we've seen, DSCS II is able to remedy a few problems with the original DSCS. Finally, to

demonstrate their viability, we have presented prototype implementations of DSCS I and

DSCS II and compared the performance of DSCS I to that of an SNC-based secure cloud

storage for static data and that of DPDP I.
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