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ABSTRACT:-

Hyperspectral image (HSI) classification has become a hot topic in the field of remote

sensing. In general, the complex characteristics of hyperspectral data make the

accurate classification of such data challenging for traditional machine learning

methods. In addition, hyperspectral imaging often deals with an inherently nonlinear

relation between the captured spectral information and the corresponding materials. In

recent years, deep learning has been recognized as a powerful feature-extraction tool

to effectively address nonlinear problems and widely used in a number of image

processing tasks. Motivated by those successful applications, deep learning has also

been introduced to classify HSIs and demonstrated good performance. This paper

presents a systematic review of deep learning-based HSI classification literatures and

compares several strategies for this topic. Specifically, we first summarize the main

challenges of HSI classification which cannot be effectively overcome by traditional

machine learning methods, and also introduce the advantages of deep learning to

handle these problems. Then, we build a framework which divides the corresponding

works into spectral feature networks, spatial-feature networks, and spectral-spatial

feature networks to systematically review the recent achievements in deep

learning-based HSI classification. In addition, considering the fact that available

training samples in the remote sensing field are usually very limited and training deep

networks require a large number of samples, we include some strategies to improve

classification performance, which can provide some guidelines for future studies on

this topic. Finally, several representative deep learning-based classification methods

are conducted on real HSIs in our experiments.
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1. INTRODUCTION

In recent years, people have only begun to obtain hyperspectral remote sensing

images with high spatial resolution and high spectral resolution relatively easily.

Because hyperspectral images have strong resolving power for fine spectra, they have

a wide range of applications in environmental [1], military [2], mining [3], and

medical fields [4]. The acquisition of hyperspectral images depends on imaging

spectrometers installed in different spaces. The imaging spectrum was established in

the 1980s. It is used to image in the ultraviolet, visible, near-infrared, and

mid-infrared regions of electromagnetic waves. The imaging spectrometer can image

in many continuous and very narrow bands, so each pixel in the used wavelength

range can get a fully reflected or emitted spectrum. Therefore, hyperspectral images

have the characteristics of high spectral resolution, many bands, and abundant

information. The processing methods of hyperspectral remote sensing images mainly

include image correction [5], noise reduction [6], transformation [7],

dimensionality reduction, and classification [8]. Unlike ordinary images,

hyperspectral images are rich in spectral information, and this spectral information

can reflect the physical structure and chemical composition of the object of interest,

which is helpful for image classification. Hyperspectral image classification is the

most active part of the research in the hyperspectral field [9].

Hyperspectral imaging sensors often provide hundreds of narrow spectral bands from

the same area on the surface of the earth. In hyperspectral images (HSIs), each pixel

can be regarded as a high-dimensional vector whose entries correspond to the spectral

reflectance in a specific wavelength. With the advantage of distinguishing subtle

spectral difference, HSIs have been widely applied in many fields [1]–[5]. Based on

the recent studies published in [6], HSI classification (i.e., assigning each pixel to one

certain class based on its spectral characteristics) is the most vibrant field of research

in the hyperspectral community and has drawn broad attentions in the remote sensing

field. In HSI classification tasks, there exist two main challenges: 1) The large spatial

variability of spectral signatures and 2) The limited available training samples versus

the high dimensionality of hyperspectral data. The first challenge is often brought by

many factors such as changes in illumination, environmental, atmospheric and
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temporal conditions. The second challenge will result in illposed problems for some

methods and reduce the generalization ability of classifiers.

A. RELATEDWORKS

In the early stage of the study on HSI classification, most methods have focused on

exploring the role of the spectral signatures of HSIs for the purpose of classification.

Thus,numerous pixel-wise classification methods (e.g., neural net-works [7], support

vector machines (SVM) [8], multinomial logistic regression, and dynamic or random

sub-space ) have been proposed to classify HSIs. In addition, some other classification

approaches have focused on designing an effective feature-extraction or

dimension-reduction technique, such as principle component analysis(PCA) ,

independent component analysis (ICA) [15],and linear discriminant analysis (LDA)

[16]. However, the classification maps obtained by these pixel-wise classifiers are

unsatisfactory since the spatial contexts are not considered.Recently, spatial features

have been reported to be very useful in improving the representation of hyperspectral

data and increasing the classification accuracies. More and more spectral-spatial

features-based classification frameworks have been developed, which incorporates the

spatial contextual information into pixel-wise classifiers. For example, in, extended

morphological profiles (EMPs) were used to exploit the spatial information via

multiple morphological operations. Multiple kernel learning (e.g., composite kernel

and morphological kernel was designed to explore the spectral-spatial information of

HSIs.

2. DATASETS OF HYPERSPECTRAL IMAGES (HSIs)

HSIs captured by airborne and space borne sensors are very useful in many

applications like remote sensing [3], land-cover [4], agriculture [5] etc. These sensors

collect reflective portion of electromagnetic spectrum containing hundreds of narrow

spectral bands and this reflective portion creates a unique spectral signature for an

object. This allows the identification of various materials on earth surface by the

unique spectral signature. As the sensors capture HSIs are very expensive, only few

HSI datasets are publicly available [5]. Also, the task of creating ground truth and

pixel-labelling is exorbitant and time-demanding [1] and consequently only a few

labelled HSIs samples are available for research work. Moreover, the DL-based
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models need an adequate number of training samples for parameter tuning during the

training phase [2]. Thus, the availability of very less number of HSI samples makes

the classification task very challenging [3]. Nevertheless, some of the HSI datasets are

publicly available and in this section three most popular datasets i.e., Pavia University,

Indian Pine, and Salinas are discussed.

2.1. Dataset of Indian Pine

Dataset of Indian Pine has been captured as first dataset by

airborne-visible-infrared-imaging spectrometer (AVIRIS) sensor over a site in

northwestern, Indiana, USA [8]. The spatial resolution of image is 20m with a spatial

size of 145×145 pixels. The spectral range of the acquired image is 0.4- 2.5μm with a

sum of 224 number of spectral bands. However, after removing water absorbed and

noisy bands, only 200 spectral bands are utilized in experiments. Also, the image

contains 16-classes with total 10366-samples in the dataset as depicted in Table 1.

Table 1. Samples and groundtruth classes of Indian Pine Dataset

2.2. Dataset of Pavia University

Reflective-optics-spectrographic-imaging-system (ROSIS) sensor was used to capture

Pavia university dataset over the Pavia University, northern Italy [85]. The image

contains a spatial resolution of 1.3m with a spatial size 610×340 pixels. The original

image contains total 115 spectral bands in a spectral range 0.43-0.86μm. However, a
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total of 103 spectral bands are utilized in experiments after discarding noisy bands.

Also, total of 9-classes having 42776-samples are available in the dataset as shown in

Table 2.

Table 2. Samples and groundtruth classes of Pavia University Dataset

3. HYPERSPECTRAL IMAGES CLASSIFICATION

The HSI classification process is shown in Figure The classification process consists

of the major steps of data input, data pre-processing, feature information extraction

and feature map activation, classification model, accuracy evaluation and

classification results.

The pre-processing of HSI mainly includes image format conversion, geometric

correction, noise reduction, dimensionality reduction, etc. The purpose is to eliminate

noise and reduce the complexity of HSI as much as possible to improve the operation

efficiency and provide data for the subsequent classification model.

Feature extraction and feature selection is also essentially a dimensionality reduction,

a process of finding the optimal solution, and commonly used methods include

Principal Components Analysis (PCA), which uses linear transformations to extract

features, but hyperspectral data is inherently nonlinear, so linear transformation

methods such as PCA can lose a lot of useful information. Choosing a suitable feature
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extraction and classification model is the key to achieve high classification accuracy.

Figure 1. Hyperspectral images classification process

Figure 2. Hyperspectral images classification model based on multicore fusion

Traditional methods can only extract limited spectral feature information, while the

spatial spectral joint feature classification-based methods can extract not only spectral

feature information but also spatial feature information and perform effective feature

fusion, which can effectively fit the nonlinear relationship between the classification

labels of high HSI and HSI data features for high dimensional data like HSI to obtain

better classification results. On the other hand, the joint spatial spectral feature

classification model integrates feature extraction and feature classification into one

framework, which can achieve end-to-end training.

4. DEEP LEARNING

In recent years, hyperspectral image classification methods have introduced spatial

information of hyperspectral images. This type of method is simply referred to as

hyperspectral image classification methods based on spatial-spectral joint features.

Deep learning originates from artificial neural networks. Compared with artificial

neural networks, deep learning has a stronger pumping ability. Deep learning models

have deeper layers, which also helps to extract feature information. This section



ISSN: 2366-1313

Volume VII Issue II November www.zkginternational.com 230

mainly introduces convolutional neural networks (CNN) in deep learning [9, 15],

deep belief network (DBN), and Stacked Autoencoder (SAE).

4.1. CNN. Classification method based on spectral features:

Hyperspectral images have very rich spectral information and extremely high spectral

resolution. Each pixel can extract one-dimensional spectral vectors. These vectors are

composed of spectral information. Classification using only one-dimensional spectral

vectors is called a classification method based on spectral information. In the

classification method based on spectral information, generally, the pixel

Figure1 : Schematic diagram of 1D-CNN

is used to extract spectral information or to obtain certain specific features from

spectral information through feature extraction to classify. Using CNN to classify

spectral features of hyperspectral images is to use one-dimensional CNN (1DCNN) to

extract spectral features and classify them. The process is shown in Figure 1.

CNN to extract spatial features. The classification is completed by combining the

class prediction scores of both the streams. Similarly, in [13], another hybrid

framework for multi-feature based HSI classification is proposed which uses PCA to

reduce dimensionality, guided filters to get spatial features and a sparse AE to extract

high level features. The authors in [14], have proposed a batch-based training scheme

for AEs to exploit spectral-spatial features and these features are merged via a mean

pooling scheme. Likely, a classification framework, exploiting spectral-spatial, is

developed in [15] to utilize stacked sparse AE for feature extraction and random

forest classifier for final classification. Furthermore in [16], the authors have used a

threefold feature learning scheme proposed in [17] to implement an efficient
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multilayer extreme learning machine-based AE framework. In work [18], the authors

have addressed the issue of high inter-class-similarity and high intra-class-variability.

Here a stacked model is used to learn discriminative features via imposing a local

fisher discriminant regularization. In the work proposed in [19], extended

morphological profiles are utilized to incorporate spatial information within the

spectral information obtained from spectral segments. The proposed scheme has been

very effective in terms of time complexity. Recently, [18], a k-sparse denoising AE is

knitted with spectral-spatial features is employed for HSI-classification. In this work,

the spatial features are obtained through restricted spatial information in order to

reduce intra-class variability of spatial features.

5. EXPERIMENTS

In this section, we mainly conduct a comprehensive set of experiments from four

aspects. Firstly, a series of experiments are designed to demonstrate the advantages of

deep learning on HSI classification over traditional methods. Secondly, the

classification performance of several recent state-of-the-art deep learning approaches

is systematacially compared. Thirdly, we visualize the learned deep features and

network weights to further explore the “black box”. Finally, the effectiveness of

strategies included in Section IV is further analyzed. To complete our experiments,

three benchmark HSIs are used, i.e., the Houston, University of Pavia, and Salinas

images. The three images are introduced in the following subsection.

Experimental Data Sets

The Houston data was distributed for the 2013 IEEE Geoscience and Remote Sensing

Society (GRSS) data fusion contest. This scene was captured in 2012 by an airborne

sensor over the area of University of Houston campus and the neighboring urban area.

The size of the data is 349×1905 pixels with a spatial resolution of 2.5 m. This HSI

consists of 144 spectral bands with wavelength ranging from 0.38 to 1.05 µm and

includes 15 classes.

Compared Methods

In this review, we have investigated several recent stateof-the-art deep learning-based

approaches, including 3D-CNN [6], Gabor-CNN [9], CNN with pixel-pair features
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(CNNPPF) [6], siamese CNN (S-CNN), 3D-GAN , and the deep feature fusion

network (DFFN) [7], for HSI classification. Specifically, the 3D-CNN exploits 3-D

convolutional filters to directly extract spectral-spatial features from the original

hyperspectral cube. However, the network architecture adopted in 3D-CNN is

relatively simple and the correlation between different layers is neglected. The DFFN

adopts the DRN [10], which can be considered a more powerful network, to extract

more discriminative features. In addition, the features from different-level layers are

further fused to explore the correlation between layers. The main drawback of DFFN

is that the optimal feature fusion mechanism depends on a hand-crafted setting with

abundant experiments. In the GaborCNN, the Gabor filtering is first utilized as a

preprocessing technique to extract

spatial features of HSIs.

Classification Results

The first experiment was performed on the Houston data set. In this experiment, the

training samples were given according to the 2013 GRSS data fusion contest. The

amount of training and test samples per class is shown in Table I. The classification

maps obtained by different methods. From this figure, we can see that the

classification maps obtained by the SVM and JSR methods are not very satisfactory

since some noisy estimations are still visible. By contrast, other methods perform

much better in removing “noisy pixels” and deliver a smoother appearance in their

classification results. By comparing two filtering-based methods, i.e., EPF and

GaborCNN, we can see that the classification map of EPF seems to be

over-smoothing, but the Gabor-CNN preserves more details in edges. Apart from

visual comparison, Table IV gives quantitative results of various methods on the

image, where three metrics, i.e., overall accuracy (OA), average accuracy (AA), and

Kappa coefficient, are adopted to evaluate the classification performance.
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Figure 3 :

TABLE 3: THE CONFIGURATION OF CNN MODEL

Figure 4 : values obtained by different methods versus number of samples.

6. CONCLUSION
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Classification and recognition of hyperspectral images are important content of

hyperspectral image processing. This paper discusses several methods of

hyperspectral image classification, including supervised and unsupervised

classification and semi-supervised classification. Although the supervised and

unsupervised classification methods described in this article have their respective

advantages to varying degrees, there are limitations in the application of various

methods. For example, supervised classification requires a certain number of prior

conditions, and human factors will affect the classification results have an impact.

Therefore, based on different application requirements, combined with the acquisition

of hyperspectral images with massive information, multiple methods need to be

combined with each other in order to achieve the desired classification effect. With

the development of hyperspectral image technology, hyperspectral image

classification has been widely used. Existing theories and methods still have certain

limitations for more complicated hyperspectral image classification. Therefore,

researching more targeted hyperspectral image classification methods will be an

important research direction in the future.
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