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Abstract : Newline One of the contemporary cancer treatment options with rising

demand worldwide is proton therapy. However, the issue of range uncertainty, which

lowers the standard of proton therapies, has yet to be addressed. The range uncertainty

that results from the calibration curve that translates x-ray Hounsfield newline units

(HU) to relative stopping power (RSP) called newline newline in this context, and

proton imaging newline is a potential way for lowering newline uncertainty. A more

modern method of proton newline imaging called proton energy resolved newline

dose imaging (pERDI) is based on the energy dependency of the dose newline

distribution produced by a scanned proton beam. The primary benefit of this method

is the reduction in complexity of the setup due to the use of a single detector to

measure the exit dosage with various beam intensities. newline This study uses the

pERDI technology to present fresh ideas in the cutting-edge area of proton

radiography. This thesis focuses on the pERDI technique to produce proton

radiographs using a variety of methods, including the and#967;2-minimization

technique, an analytical expression, and various machine learning (ML) methods,

including neural networks from the Keras library, the Extreme Gradient Boosting

(XGboost) algorithm, and advanced deep learning (DL) methods. newline The

research on the newline accuracy that may be attained utilising the pERDI approach

in homogeneous and heterogeneous newline media are presented in the first section of

the thesis. The findings are encouraging since the feasible WEPL newline accuracy in

a homogenous medium was within 1 mm utilising the Lynx detector, and all

homogeneous inserts of tissue surrogates were measured with an RSP with a precision

newline greater than 1.5%. newline The first findings showed that the newline vi

newline pERDI approach can estimate the WEPL and RSP newline with clinically

acceptable accuracy.
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I Introduction:

Although research on proton imaging

in proton therapy was initiated about

60 years ago, the practical application

has not yet been achieved. The range

of protons is now determined from the

xCT scans in all proton facilities. The

electron densities of various tissue

materials that are kept in HU are

shown by xCT pictures. A calibration

curve is used to quantify the protons'

RSP from HU for therapy. This

translation from HU to RSP puts

uncertainty into the RSP calculation,

which further translates into error in

the proton range. Proton radiography

and proton computed tomography are

the two different forms of proton

imaging. Protons are used to create

two-dimensional (2D) pictures in pRG

and three-dimensional (3D) images in

pCT. In the beginning, in the 1960s

and 1970s, there was a lot of research

and interest in pRG and pCT. Later,

xCT photos surpassed pRG and pCT

images in popularity because to their

higher resolution images. As a result,

there was a fall in interest in proton

imaging, and few experiments and

studies were conducted for a while.

Proton imaging methods have gained

popularity in the last 20 years, and

there has been a rise in interest in this

area of research as a result of the

expansion of proton treatment facilities

across the globe. The range of the

protons in the observed object is

shown by pRG pictures, which may be

directly extracted from photon-based

images. The proton image has unique

limits as well as additional advantages.

The primary drawback is the poor

picture quality in comparison to results

from xCT procedures.

In contrast to photons, protons do not

move through a medium in a straight

path. From the nuclei's Coulomb field,

protons are deflected. Multiple

Coulomb Scattering, or MCS, refers to

these many, random small-angle

deflections of protons from atomic

nuclei. Due to MCS, the protons travel

further than the material's true

thickness, resulting in poor spatial

resolution in the reconstructed

radiographs. The excitation and

ionisation of the atomic electrons cause

the charged particles in our research,

protons, to lose energy. According to

the Bethe-Bloch formula (1), the speed

of the particles in the medium being

traversed has an inverse relationship

with the rate of energy loss. All the

protons with a certain energy should

come to an end at a certain depth
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(range of protons) in the material. Any

proton in the medium will halt at a

different depth depending on statistics

[2]. With a standard deviation in range

straggling surpassing 1%, fluctuations

in the proton range (referred to as

range straggling) are linked to

variations in the energy straggling [3].

Proton Imaging

Proton radiography and proton

computed tomography were introduced

in 1963 by Cormack . These

techniques might be developed and

have some benefits over traditional X-

ray computer tomography. The limited

spatial resolution of pCT was found to

be a major obstacle for the creation of

images. The multiple scattering event

is the result of the small angle

deflections that occur in the protons'

trajectory due to interactions between

the Coulomb fields on the nucleus and

the absorbent material.

Proton imaging has yet to be

incorporated into the clinical routine.

Many academic studies are underway

to improve access to proton therapy

once significant technical obstacles

have been overcome.

II Litreature Survey

The physics of proton therapy is

discussed in this chapter, along with

the interactions of various particles in

water, the link between proton energy

and range, the many treatment

modalities used in proton therapy, as

well as its benefits and drawbacks.

Radiation therapy's primary objective

in the treatment of cancer is to deliver

as much energy as possible to the

tumour in order to damage its DNA

and halt the proliferation of

uncontrolled cells while protecting

nearby healthy tissues and the OAR

from needless radiation. Proton therapy,

as the name implies, employs protons

to treat tumours instead of the high-

energy photons and electrons that are

employed in conventional radiation

treatment to treat cancer.

Particles may disperse, leave energy

behind, or even halt as they go through

matter. The kind of particle, energy,

beam intensity, and density of the

substance it goes through all affect the

amount of energy deposited per unit

mass, or dosage. The cancer should get

the highest dosage possible while the

surrounding tissues only receive the

bare minimum. Numerous research are

now being conducted to help
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accomplish this and enhance the

quality of life after therapy. [4–6].

The depth-dose distribution provides

the dosage deposited by various

particles moving through a material

medium. The distribution of depth-

dose for charged and neutral particles

in water [7].

These particles' depth-dose profiles

exhibit a brief area of dose build-up

followed by an exponential decrease.

These particles cause the atomic

electrons to move by interacting with

the surrounding material, transferring

energy to them, and doing so. Since the

radiation is delivered by these

secondary electrons directly to the

tumour, their initial number rapidly

declines. Even after passing through

the water tank, the particles that do not

interact with the medium will stay the

same as when they first enter.

These particles exhibit a flat-dose

plateau, a "Bragg peak"—a strong

peak—and an area of dose fall-off.

Compared to other heavy ions, protons

have a dosage that is negligible or

nonexistent beyond the Bragg peak. As

the mass of the ions grows, the Bragg

peak gets sharper, and at the same time,

the ions exhibit a residual dose that

results from nuclear fragmentation

after the Bragg peak. To protect the

healthy tissues, protons are favoured

over other particles while treating

tumours.

On the other hand, when considered as

a radiological technique for age

estimate, magnetic resonance imaging

is unquestionably non-invasive and

radiation-free. However, it may not be

particularly successful in finding

ossification centres and is highly

extensive, costly, has logistical issues,

and calls for a more precise

methodology [8].

However, ultrasonography may be

seen as a radiation-free, reliable, quick,

economical, and nonionizing imaging

process when compared to the

aforementioned radiological modalities

for age determination. However, there

are currently only a small number of

research on the use of skeletal

ultrasonography in forensic age

diagnosis [9]. Tanner JM et al.

discovered in another study that there

is significant intra- and inter-individual

variation in the interpretation of

radiographs, and they made attempts to

increase reliability by creating pattern
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recognition software that would enable

computer-assisted radiographic bone

age determination [10-11].

The TW approach is more accurate

than the GP method since it is based on

a more reliable mathematical

foundation, but it is also more time-

consuming and harder to implement,

according to Alessandro et al. who

compared the traditional and recently

devised methods for skeletal age

assessment [12].

But we cannot overlook the reality that

small children, women who are

childbearing age, and sometimes

pregnant women make up the very

demographic arriving for age

assessment, where radiation exposure,

no matter how slight, presents a serious

threat to health [14]. Radiations in the

form of exposure with radiological

techniques that employ one kind of X-

ray beam or another may result in a

variety of negative consequences, such

as dermatitis, infertility, cancer, etc.

Therefore, even a little danger of

radiation exposure should be of

concern, particularly in the current

environment, where it is crucial to

follow ethical guidelines for any

activity involving research on human

beings. Additionally, there are some

areas, like the clavicle, where

radiographs in adults result in radiation

doses similar to those from A CT scan

of a clavicle is significantly more

accurate than other methods, including

an orthopantomogram (0.02 mSv), and

a radiograph taken on the hand

(0.0001mSv). [13–14].

III Methodology

Each proton's leftover energy or

residual range, as well as its

placements before and after the target,

are monitored using proton tracking

devices. A calibration between the

signal in a detector and the route length

travelled with averaged across several

protons is achieved in proton

integrating systems. WePL readings

from the 2-D pRG pictures may be

utilised to confirm treatment plans and

provide information on the protons'

range. There are three-dimensional

volumetric WEPL values in the data

from pCT. Using these WEPL values,

the RSP of protons is calculated

throughout the picture reconstruction

process.
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Figure 1 : Proton tracking system with position sensitive detectors (PSDs) and

residual energy-range detector (RERD) schematically shown in . Drawing modified

from [13].

Koehler reported the first pRG results

in 2019 [15], then in 2020 [16] the

findings of the pCT inquiry. Koehler

displayed the poor spatial resolution

and high contrast proton radiograph of

an aluminium absorber. As a result of

scattering, the experiment's proton

beam's energy dropped from 160 MeV

to 137 MeV, stopping

Figure 2 shows the proton integrating system schematically.

where the photographic film was

positioned. He established a

relationship between proton flux and

depth, and the steepness of the flux-

depth curve allowed for the thickness

of the imaged object to be determined

[17].

A transport system and gantry with

moveable components are part of the

experimental setup at PSI, which can
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provide energy up to 270 MeV. Figure 3 displays the experimental setup's

schematic depiction.

Figure 3.3: Schematic illustration of the PSI's experimental setup. Image used with

permission.

Two position-sensitive multiwire

proportional chambers (MWPC) are

used in the experiment and are

positioned before and after the test

item. The 590 MeV proton was

downgraded to 219 MeV by passing

the proton beam via a range changer.

After passing through the test item and

being identified by MWPC2, the

protons were first detected in MWPC1.

The beam continues on to the

scintillator before coming to a halt at

the NaI energy detector.

Reconstructing the intercepts of each

event's most probable route between

MWPC1 and MWPC2 was done as

part of the study [16].

IV Experiments and Results

Resource and Techniques

The range-shift maps derived from

simulations of PR in 40 patients with

head and neck disorders have been

analysed using CNNs. Each PR field

had a varied size and was located in a

distinct part of the body. The shift

maps that came from each sort of PR

field were categorised by a CNN

expert.

The PR Simulations

To simulate PRs, OpenREGGUI was

utilised as an open-source Matlab

toolbox [8],[12]. The Giraffe MLIC
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(Multi-Layer Ionisation Chamber) PRs

(IBA Dosimetry Schwarzenbruck DE)

may be simulated with this technique.

This technology can model the creation

of PR.

An air MLIC is used as input in the

simulations. The patient's water

equivalent thickness (WET), as

estimated by the CT imaging, is then

used to scale integral depth dose (IDD)

curves along the beam axis. The

technique uses a Gaussian kernel to

combine the air IDDs with the beam

sigma of 3.5mm to account for range-

mixing. As the IDD reference is an

actual MLIC measurement these

simulations are close to true

measurement noise. The PR

simulations used 210 MeV pencil

beams with a 270-degree gantry and

1mm spacing between pencil beams.

The research was based on planning

CT images of 40 head and neck

cancers patients that had received

previous treatment at our facility.

To evaluate the efficacy of this

strategy in various anatomical

placements and with varying PR field

widths, PR fields are simulated. It was

decided to cover the patient's head and

neck with a 26 x 26 cm2 PR field. At

the base of the head and neck, two

minuscule areas, each measuring 4.5

by 4.5 cm2, were likewise

reconstructed. Fields A, B, and C are

the names of the three fields. Their

location is shown in Figure 1 together

with a patient geometry example. Field

A's size was chosen to include the head

and neck. To make the most of the

readout space on the MLIC, the sizes

of fields B and C have been selected.

This was done in accordance with

previous investigations using an MLIC.

Three fields were chosen to cover

different tissues along the beam. The

presence of heterogeneity on the lateral

side was also encouraged, as it

produces different Bragg curves which

help to identify setup mistakes [9].

Mistaken situations

For each patient's CT image, a

reference PR was created to imitate an

unaltered range measurement.

Reference radiographs were contrasted

with radiographs in which the proton

range was altered by one or more

causes of inaccuracy. Setup errors and

errors in the calibration curve were

considered as sources of error. The

Table 1 shows the values for density

and the Hounsfield Unit (HU) of the

general calibration curve, which
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represents a reference condition that

has not been altered. By altering the

density values in the calibration curves

for the soft (S) and hard (B), tissue

sections, calibration curve errors may

be reproduced.

CNNs corresponding to fields A, B,

and C were given variable sizes and

different numbers of convolutional

layers. For instance, the CNN allocated

to field A has four convolutional layers

with two having 32 and two having 64

filters, each with a size of three. A max

pooling layer, which follows each

convolutional layer, minimises the size

of the representation by extracting the

maximum value from each convolution.

An activation function for the rectifier

linear unit (ReLu) then reduces all

negative inputs to zero. Two layers are

linked together by adding the result of

the layer pooling (for example, it is

modified and flattened). In the first

layer, an activation function named

ReLu will be used.

CT scans from 30 patients served as

the training, validation and testing

datasets to create range-shift maps.

Twenty PR simulations were run for

each CT scan. Two of each category of

mistake with different magnitudes was

used. Simulations of error

combinations involved forty patients.

Each patient had 24 maps of range

shift created, which corresponds with

the possible mistake combinations

shown in Table 2. Each CNN is trained

using 1120 maps, 400 of which are

from individual mistakes and 720 from

combinations. Each error type is

equally represented. The 10% map set

was randomly chosen to be used as a

training aid. The 10 remaining range

shifts for patients were assigned to the

Test cases The CNNs were not

previously introduced to any of the

patients that had been used for the

testing. Table 3 shows that one set of

testing (known as test isolated, or TI),

consisted of 200 range-shift maps for

one type mistake. Another set

contained 240 range-shift maps.

Measurement metrics

For each range shift map in the testing

sets, a prediction vector was created

when the training procedure was

complete. Based on a threshold of 0.5,

each prediction v ctor value was

divided into two groups. Predictions

were labelled as positive or negative

for that mistake based on whether they

were above or below the threshold.
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The resultant binary prediction vectors

are therefore prepared for comparison

with their corresponding actual values

(label) once the threshold has been

applied. The exact, incorrect, and

partial match percentages were used to

evaluate the accuracy of the forecasts.

The term "exact matching" is used

when every element of a binaryized

prediction vector exactly matches the

corresponding real values. It is

regarded as an invalid match when

none of the recognised fault kinds in a

map range shift are present. Partial

matches happen when certain

components of the prediction vector

match the label but the prediction

vector and binarized value vector are

not the same. If a range-shift map

includes just one kind of mistake and

the CNNs anticipate two types of

errors, partial matches may also

happen in TI.

The percentages of precise matches,

partial matches, and wrong matches for

CNNs allocated to A, B, and C were

computed in T and TC. Five categories

make up the TI assessment: S, B, F,

AP, and IS. For the six mistake

combination sets S and IS, B and AP,

B and IS, F and AP and IS, we

estimated the exact, erroneous, and

partial match for TC.

Figure 4 Percentages of exact, partial, and incorrect matches for each class type the

other categories follow suit.
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Figure 5 : Calculated percentages of exact, incomplete, and incorrect matches for

various groupings .

CNNs do better than TI or TC when

they classify range shifts maps with

isolated mistakes, rather than

classifying combinations. In fields A,

C, and B the percentages of exact

matches are 92% for individual

mistakes and 80% for combinations,

correspondingly, 78%. In terms of

exact matches, 71%, 54% and 41% are

the percentages. In TI only a very

small number of maps are partially

classified, but this is not the case in TC

Figure 4 for TI reports a subsequent

performance review broken down by

error type. Exact match percentages for

calibration curve mistakes are often

quite close to 100%. A somewhat

worse result is achieved for mistakes

of type F, where 10% of fields

included incorrect matches.

A and C. In comparison to calibration

curve errors, setup error predictions

have a greater incidence of partial

matches. The most relevant instances

may be found in field B's AP mistakes

(62% of partial matches) and field C's

IS faults (57% of partial matches). IS

mistakes both had wrong match rates

of 17% and 22%, respectively. The

results of CNN's performance for

various sorts of combinations (using

TC) are shown in Figure 5. Since the

exact match percentages for all sorts of
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combinations vary from 59% to 78%,

field A performs better than fields B

and C. Field B exhibits significant

performance variability for various

combinations of error kinds. For

instance, the exact/partial match ratio

for the combination of S and AP is

79/21%, whereas the ratio for the

combination of F and AP is 48/52%.

The performance of the CNN in field C

is consistent across several

combinations, with exact match

percentages ranging from 32% to 49%.

Three CNNs were able to identify

instances where a calibration error and

an incorrect setup was both found. In

this case, field A produced the best

results. Fields B andC followed.

Position of PR fields also affects the

CNN's ability to recognize

combinations of errors. The field B at

the top of the head yields a 13%

greater exact match percentage than

Field C when two fields are of similar

size. In an ideal site, every mistake will

result in a pattern that is distinct and

easily recognisable. Moreover, all

tissues that are to be used in the

calibration should also be in the

anatomical region.

These demands aren't usually entirely

attainable. For instance, there are slight

range changes because the head and

neck area has less fat tissue than other

tissues. In particular, when they occur

in conjunction with setup errors (figure

2), range shifts caused by type F

mistakes can cause problems for CNNs.

Figure 2 shows that range shifts caused

by faults of Type F can be as bad or

worse than those produced by Errors of

Type S. Figure 4 demonstrates how

calibration curve mistakes may be

quickly seen when they occur alone.

Although there are more partial

matches than complete matches, setup

problems are often observed. In certain

circumstances, CNN forecast both the

preexisting setup fault and an

additional sort of error. In most cases,

calibration errors are more important

than setup mistakes. CNNs have been

trained to identify two types of errors

in maps that are dominated by setup

faults. The result is not a constraint,

since the CNN can detect setup errors

and realign the patient if necessary. To

confirm there are no more calibration

curves, a second PR may be acquired.

Otherwise, local setup troubles would

persist. The PR field has to be sized to

a suitable compromise. Alternative

methods for minimising setup mistakes,
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such as those established by Deffet and

colleagues [12], might be added to

CNNs to aid in the identification of

additional possible sources of error

impacting the proton range.

V Conclusion

It was shown that using CNNs, it is

possible to categorise PR photos that

are distorted by various proton range

errors. Patients with head and neck

cancer underwent PR simulations that

included both individual and combined

setup and calibration curve flaws. The

examined technique offers tools for

automated PR interpretation in the

quality assurance procedure for proton

therapy.
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