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Abstract- We employ a semi-parametric method known as Boosted Regression Trees (BRT) to forecast stock
returns and volatility at the monthly frequency. BRT is a statistical method that gen- erates forecasts on the basis
of large sets of conditioning information without imposing strong parametric assumptions such as linearity or
monotonicity. It applies soft weighting functions to the predictor variables and performs a type of model averaging
that increases the stability of the forecasts and therefore protects it against overfitting. Our results indicate that
expanding the conditioning information set results in greater out-of-sample predictive accuracy compared to the
standard models proposed in the literature and that the forecasts generate profitable portfolio allocations even
when market frictions are considered. By working directly with the mean-variance investor’s conditional Euler
equation we also characterize semi-parametrically the relation between the various covariates constituting the
conditioning information set and the investor’s optimal portfolio weights. Our results suggest that the relation
between predictor vari- ables and the optimal portfolio allocation to risky assets is highly non-linear.

Keywords: Equity Premium Prediction, Volatility Forecasting, GARCH, MIDAS, Boosted

Regression Trees, Mean-Variance Investor, Portfolio Allocation.

1 Introduction

Information plays a central role in modern finance. Investors are exposed to an ever-increasing

amount of new facts, data and statistics every minute of the day. Assessing the predictabil- ity of

stock returns requires formulating equity premium forecasts on the basis of large sets of

conditioning information, but conventional statistical methods fail in such circumstances. Non-

parametric methods face the so-called “curse-of-dimensionality”. Parametric methods are often

unduly restrictive in terms of functional form specification and are subject to data overfitting

concerns as the number of parameters estimated increases. The common practice is to use lin- ear

models and reduce the dimensionality of the forecasting problem by way of model selection and/or

data reduction techniques. But these methods exclude large portions of the conditioning

information set and therefore potentially reduce the accuracy of the forecasts. To overcome these

limitations we employ a novel semi-parametric statistical method known as Boosted Regression

Trees (BRT). BRT generates forecasts on the basis of large sets of conditioning variables without

imposing strong parametric assumptions such as linearity or monotonicity. It does not overfit

because it performs a type of model combination that features elements such as shrinkage and

subsampling. Our forecasts outperform those generated by established benchmark models in

terms of both mean squared error and directional accuracy. They also generate profitable port-
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folio allocations for mean-variance investors even when market frictions are accounted for. Our

analysis also shows that the relation between the predictor variables constituting the conditioning

information set and the investors’ optimal portfolio allocation to risky assets is, in most cases, non-

linear and non-monotonic.
Our paper contributes to the long-standing literature assessing the predictability of stock re-

turns. Over the nineties and the beginning of the twenty-first century the combination of longer
time-series and greater statistical sophistication have spurred a large number of attempts to add
evidence for or against the predictability of asset returns and volatility. In-sample statistical tests
show a high degree of predictability for a number of variables: Roze↵ (1984), Fama and French
(1988), Campbell and Shiller (1988a,b), Kothari and Shanken (1997) and Ponti↵ and Schall (1998)
find that valuation ratios predict stock returns, particularly so at long horizons; Fama and Schwert
(1977), Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989), Hodrick (1992)
show that short and long-term treasury and corporate bonds explain variations in stock returns;
Lamont (1998), Baker and Wurgler (2000) show that variables re- lated to aggregate corporate
payout and financing activity are useful predictors as well. While these results are generally
encouraging, there are a number of doubts regarding their accuracy as most of the regressors
considered are very persistent, making statistical inference less than straightforward; see, for
example, Nelson and Kim (1993), Stambaugh (1999), Campbell and Yogo (2006) and Lewellen,
Nagel, and Shanken (2010). Furthermore, data snooping may be a source of concern if researchers
are testing for many di↵ erent model specifications and report only the statistically significant
ones; see, for example, Lo and MacKinlay (1990), Bossaerts and

Hillion (1999) and Sullivan, Timmermann, and White (1999). While it is sometimes possible to
correct for specific biases, no procedure can o↵ er full resolution of the shortcomings that a↵ ect
the in-sample estimates.

Due to the limitations associated with in-sample analyses, a growing body of literature has

argued that out-of-sample tests should be employed instead; see, for example, Pesaran and Tim-

mermann (1995, 2000), Bossaerts and Hillion (1999), Marquering and Verbeek (2005), Campbell

and Thompson (2008), Goyal and Welch (2003) and Welch and Goyal (2008). There are at least

two reasons why out-of-sample results may be preferable to in-sample ones. The first is that even

though data snooping biases can be present in out-of-sample tests, they are much less severe than

their in-sample counterparts. The second is that out-of-sample tests facilitate the assessment of

whether return predictability could be exploited by investors in real time, therefore providing a

natural setup to assess the economic value of predictability.

The results arising from the out-of-sample studies are mixed and depend heavily on the model

specification and the conditioning variables employed.1 In particular, many of the studies con-

ducted so far are characterized by one or more of these limitations. First, the forecasts are

generally formulated using simple linear regressions. The choice is dictated by simplicity and the

implicit belief that common functional relations can be approximated reasonably well by linear

ones.2 Most asset pricing theories underlying the empirical tests, however, do not imply linear

relationships between the equity premium and the predictor variables, raising the issue whether

the mis-specification implied by linear regressions is economically large. Second, linear mod- els

overfit the training dataset and generalize poorly out-of-sample as the number of regressors
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increases, so parsimonious models need to be employed at the risk of discarding valuable con-

ditioning information. Approaching the forecasting exercise by way of standard non-parametric or

semi-parametric methods is generally not a viable option because these methods encounter

“curse-of-dimensionality” problems rather quickly as the size of the conditioning information set
increases. Third, the models tested are generally constant: di↵ erent model specifications are
proposed and their performance is assessed ex-post. Although interesting from an econometric
perspective, these findings are of little help for an investor interested in exploiting the condition-

1The data frequency also a↵ ects the results. Stock returns are found to be more predictable at quarterly, annual or longer
horizons, while returns at the monthly frequency are generally considered the most challenging to predict.

2Another reason underlying the use of linear frameworks is that those statistical techniques were known by investors since
the beginning of the twentieth century. For this and other issues related to “real-time” forecasts, see Pesaran and
Timmermann (2005). ing information in real time as he would not know what model to choose ex-ante.3 Finally,
apart from some important exceptions, much of the literature on financial markets prediction focuses on
formulating return forecasts and little attention is dedicated to analyzing quantitatively the economic value
associated with them for a representative investor

While conditional returns are a key element needed by risk-averse investors to formulate asset allocations,
the conditional second moments of the return distribution are crucial as well. In fact, they are the only two
pieces of information required by a mean-variance investor to formulate optimal portfolio allocations. It is
widely known that stock market volatility is predictable and a number of studies attempts to identify which
macroeconomic and financial time-series can improve volatility forecasts at the monthly or longer horizons.5
But it is still unclear whether that conditioning information could have been incorporated in real-time and how
much an investor would have benefitted from it.
In this paper we consider a representative mean-variance investor that exploits publicly avail- able

information to formulate excess returns and volatility forecasts using Boosted Regression Trees (BRT).

BRT finds its origin in the machine learning literature, it has been studied exten- sively in the statistical

literature and has been employed in the field of financial economics by Rossi and Timmermann (2010) to

study the relation between risk and return. The appeal of this method lies in its forecasting accuracy as

well as its ability to handle high dimensional fore- casting problems without overfitting. These features are

particularly desirable in this context, because they allow us to condition our forecasts on all the major

conditioning variables that have been considered so far in the literature, guaranteeing that our analysis is

virtually free of data-snooping biases. BRT also provide a natural framework to assess the relative

importance of the various predictors at forecasting excess returns and volatility. Finally, the method allows

for semi-parametric estimates of the functional form linking predictor and predicted variables, giving

important insights on the limitations of linear regression.

Our analysis answers three questions. The first is whether macroeconomic and financial variables contain

information about expected stock returns and volatility that can be exploited in real time by a mean-

variance investor. For stock returns we use the major conditioning variables proposed so far in the

literature and summarized by Welch and Goyal (2008). We propose two models of volatility forecasts. The

first models volatility as a function of monthly macroeconomic and financial time-series as well as past

volatility. The second is inspired by the family of MIDAS models proposed by Ghysels, Santa-Clara, and

Valkanov (2006) and models monthly volatility as a function of lagged daily squared returns. We call this

model “semi-parametric MIDAS” and show that its performance is superior to that of its parametric

counterpart. Genuine out- of-sample forecasts require not only that the parameters are estimated

recursively, but also that the conditioning information employed is selected in real-time. For this reason,
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every predictive framework under consideration starts from the large set of predictor variables employed

by Welch and Goyal (2008) and selects recursively the model specification. Our estimates show that BRT

forecasts outperform the established benchmarks and possess significant market timing in both returns

and volatility.

A related question we address is whether the conditioning information contained in macro and financial

time-series can be exploited to select the optimal portfolio weights directly, as proposed by Ait-Sahalia and

Brandt (2001). Rather than forecasting stock returns and volatility separately and computing optimal

portfolio allocations in two separate steps, we model directly the optimal portfolio allocation as a target

variable. Our approach can be interpreted as the semi-parametric counterpart of Ait-Sahalia and Brandt

(2001),6 because instead of reducing the dimensionality of the problem faced by the investor using a single

index model, we employ a semi-parametric method that avoids the so-called “curse of dimensionality”. Our

analysis gives rise to two findings. First, formal tests of portfolio allocation predictability show that optimal

portfolio weights are time-varying and forecastable; second, we show that the relation between the

predictor variables constituting the conditioning information set and the mean-variance investor’s optimal

portfolio allocation to risky assets is highly non-linear. The third question we analyze is whether the

generated forecasts are economically valuable in terms of the profitability of the portfolio allocations they

imply. We assess this by com- puting excess returns, Sharpe ratios and Treynor-Mazuy market timing tests

for the competing investment strategies. Our results highlight that BRT forecasts translate into profitable

portfolio allocations. We also compute the realized utilities and the break-even monthly portfolio fees that

a representative agent would be willing to pay to have his wealth invested through the strategies we

propose, compared to the benchmark of placing 100% of his wealth in the market portfolio.

1.1 Mean-Variance Investor and Portfolio Allocation

We construct portfolio weights for the mean-variance investor described in Section 2 who uses

boosted regression trees to formulate return and volatility predictions.16

We have a free parameter ц that determines the investor’s degree of risk-aversion. We set
it to 4 as that corresponds to a moderately risk-averse investor. We first present the results for

unconstrained portfolio weights and evaluate the performance of two models. In the first, market

returns and volatility are forecasted separately and the optimal mean-variance portfolio allocation

is computed in a second stage (two-step BRT model). In the second, the optimal portfolio allocation

is forecasted directly following the procedure described in Section 3 (one-step BRTmodel).

We compare our results to three benchmark strategies. The first uses stock returns predictions

from a multivariate linear regression model selected recursively using the BIC on the full set of

predictor variables listed in Section 2 and volatility predictions from a GARCH (1,1) model. The

second model replaces the GARCH (1,1) model with a MIDAS (Beta) model (Ghysels et al (2005)).

The third benchmark is a passive investment strategy that allocates 100% of wealth in the market

portfolio at all times.

In Panel A of Table 3 we report the mean and standard deviation of returns for each in-
vestment strategy. We also report the Sharpe Ratio, the Jensen’s Alpha measure of abnormal

returns, i.e. the coefficient and t-statistic for the ↵ 0 coefficient in the regression
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t

rp,t+1 = ↵ 0 + ↵ 1rt+1 + ✏t+1, (27)

where rp,t+1 is the return on the investment portfolio and rt+1 is the return on the market portfolio.
Finally, we report the Treynor-Mazuy (TM) test statistic, i.e. the coefficient and t-statistic for the
↵ 2 coefficient in the regression rmance is evaluated over the sample 1969-2008. The best model is
the BRT that forecasts the optimal portfolio allocation in two steps with a monthly Sharpe ratio of
15.81%. The second best is the one-step BRT model with a Sharpe ratio of 14.81%. The two-step
BRT model has a higher and more significant Jensen’s Alpha measure of market outperformance,
but a lower and less significant Treynor-Mazuy (TM) measure of market timing compared to the
one-step BRT benchmark strategies have a negative and insignificant Jensen’s Alpha: -0.072% for
the model that uses a GARCH (1,1) and -0.069% for the model that uses a MIDAS (Beta)
specification. The Treynor-Mazuy measure of market timing is positive but insignificant for both
models. The Sharpe ratios, 2.70% and 3.18% respectively, are smaller than that of the passive
strategy (Panel D) that invests 100% of wealth in the market portfolio (7.71%).

In Panel B of Table 3 we repeat the same exercise imposing short-selling and borrowing

constraints. As expected, the constraints reduce the profitability of both BRT-based investment

strategies. The Sharpe ratio of the two-step BRT model drops by approximately 1.8% to 14.01%,

while the Sharpe ratio of the one-step BRT model drops by approximately 2.2% to 12.59%. The

lower Sharpe ratios are due to both lower mean returns and volatility of the constrained portfolio

allocations compared to the unconstrained ones. The magnitudes of both Jensen’s Alpha’s and TM

market timing measures are lower than their unconstrained counterparts, but they maintain a

strong level of statistical significance. The opposite holds true for the two active benchmark

strategies. The Sharpe ratio for the investment strategy that exploits GARCH (1,1) volatility

forecasts increases by 2.8% to 5.52% and the one for the MIDAS (Beta) increases by 3.5% to 6.69%.

There are a number of reasons for this, the most important being that there is a fair degree of

estimation error in the estimated optimal portfolio allocations, particularly so for the linear

regression, GARCH (1,1) and MIDAS (Beta) models that minimize L2 criterion functions. We show in

section 4.7 that accounting for estimation uncertainty improves the performance of the investment

strategies.
Table 3 Panel C reports results for models that exploit only the predictability of stock returns:

i.e. the investment strategy entails investing 100% of wealth in the risky asset if expected excess

returns are greater than zero and 0% otherwise. For the one-step BRT model the decision is based

on the sign of the expected Sharpe ratio rather than that of expected returns. For BRT, the portfolio

allocations that do not exploit volatility predictions are less profitable than those that do. The

Sharpe ratio of the two-step BRT model drops by 1.2% to 12.83% and the one for the one-step BRT

model drops by 1.4% to 11.18%. The results for the BRT models indicate that the investment

strategies that explicitly model volatility lead to more profitable portfolio allocations. The opposite

holds true the two active benchmark strategies as the Sharpe ratio of the linear model that does not

exploit volatility forecasts is 8.09%, higher than the 5.52% and 6.69% obtained by the models that

use GARCH (1,1) and MIDAS (Beta) volatility forecasts, respectively.

Overall, this section highlights that BRT models outperform the established benchmarks in
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term of constrained and unconstrained portfolio allocation performance. They also show that, for

BRTmodels, portfolio allocations based on both conditional returns and volatility estimates are
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more profitable than those that exploit return predictability only. Next, we focus our attention on

BRT models with transaction costs and show that the outperformance of our framework is robust

to the inclusion of such frictions.

2 Conclusions

We present new evidence on the predictability of stock returns and volatility at the monthly

frequency using Boosted Regression Trees (BRT). BRT is a novel semi-parametric statistical

method that generates forecasts on the basis of large sets of conditioning information without

imposing strong parametric assumptions such as linearity or monotonicity. Our forecasts outper-

form those generated by benchmark models in terms of both mean squared error and directional

accuracy. They also generate profitable portfolio allocations for mean-variance investors even

when market frictions are accounted for. Finally, our analysis shows that the relation between the

predictor variables constituting the conditioning information set and the investors’ optimal

portfolio allocation to risky assets is, in most cases, nonlinear and nonmonotonic.
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