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ABSTRACT

Differential and integral equations of integer and fractional order arise from

mathematical modelling of issues in science and industry. Only under extremely special

conditions and on extremely constrained surfaces are closed form solutions or precise

answers for such problems achievable. Because of this, effective computational

techniques for handling them have become increasingly crucial. Approximate solutions to

differential and integral equations of integer and fractional order are computed in this

thesis using a variety of numerical techniques. We hope to classify and evaluate the

effectiveness of the chosen approaches. We address difficulties that scholars have

encountered and stress the importance of multidisciplinary work in furthering the study

of computational techniques for solving differential and integral equations. Fractional

order differential equations of the Lane-Emden type are solved using a computational

technique based on orthonormal Bernoulli's polynomials and their operational matrices

I. INTRODUCTION

Algebra is the bedrock of civilization. Real-world applications of numbers

include counting, sketching, finding the company, and verifying the amount of

money. Many other disciplines, including physics, chemistry, structural

engineering, and computer science, rely on numbers for even the most basic

calculations and calculations. Since the issues' evolving states can be either

linear or non-linear, all processing apps describe them using either type of

equation. Consequently, it's possible that a single answer won't work for both

linear and non-linear issues.

These days, non-linear equations are the norm when it comes to solving
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problems in the actual world. Building precise answers to a nonlinear evolution

equation is a crucial part of any thorough analysis of this type of equation.

Finding precise answers to that equation is crucial to the study of complex

physical systems.

Due to the intricacy and non-homogeneity of material characteristics, most real

issues in science and engineering do not have a closed form answer. Therefore,

estimated answers to such complicated issues must be obtained through the use

of computational techniques. The finite difference method (FDM) was

commonly used to address such issues in the 1960s. In contrast to FDM, the

finite element technique (FEM) developed in the 1970s. While FEM divides the

solution domain into several smaller sub-domains, FDM divides the solution

domain into rows and columns of perpendicular lines to create grids. The sub-

domains are depicted by triangles or quadrilaterals, and the unknown functions

are estimated by the known functions, which are linear or higher order

polynomials that rely on the physical coordinates used to determine the finite

element form. After evaluating the finite element equations over each element,

the results are compiled for the complete area. Many repeated techniques are

used to answer the collection of algebraic equations derived in terms of the

undetermined factors for the entire regions. There are many scientific and

industrial areas where nonlinear wave events are observed.
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The last few decades have shown that precise answers can aid in the discovery

of previously unknown occurrences.

Non-linear equations are of interest because they accurately characterize the

unique properties of many scientific and industrial uses. It is possible to get

precise answers for non-linear problems in any area using homogeneous

techniques. Simplified homogeneous balance methods, dimensional

homogeneous balance methods, and etc. have all been suggested in previous

study to address the problem of handling non-linear equations. However, they

have a narrow field of usefulness. Design components for linear, non-linear,

discontinuous, and random data produced by a wide range of engineering

applications have recently become commonplace in the realm of computational

applications. The uniform balance technique is widely used in all of science and

engineering because of its ability to answer non-linear problems. Since there are

three non-linear developing equations, it is recommended to use the uniform

balance technique to solve them. So, the goal of this study was to use the

uniform balance technique to solve some non-linear equations exactly. This

study shows the use of the homogeneous balance technique for solving a

number of non-linear equations, including Gardner, Burgers, and Fisher

equations.

From the academic definition and description of numerical methods to their

practical implementation as dependable and well-organized computer coders,

numeric analysis investigates all facets of numerical solving of problems in

continuous mathematics. When we say "continuous mathematics," we're

referring to the branch of mathematics that studies things like real numbers,

real-valued functions, etc. This type of issue features constantly varying factors

and results from the practical application of math, geometry, and calculus.

Natural sciences, social sciences, engineering, physics, building, medical, life

science, economics, business management, and even the arts are not immune to
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these sorts of issues. Differential equations, systems of differential equations,

integral equations, integra-differential equations, etc., arise from the

mathematical modelling of these issues. Since closed form or precise solutions

to such equations are only achievable under special conditions and for specific

areas, a large part of numerical analysis studies is focused on finding

approximations to the true answers. Therefore, in order to solve such

mathematical issues, numerical analyzers and ap- plied scientists use a broad

variety of instruments to create numerical techniques. When closed-form

solution techniques cannot or will not work, numerical methods can be used to

provide approximative but trustworthy and precise answers.

The proliferation of processing power and the sophistication of numerical

analysis have allowed scientists and engineers to create increasingly accurate

and detailed mathematical models in their fields. Using computers to apply

numerical techniques for handling mathematical models of the actual world has

increased the significance of computing. Mathematically inspired computer

algorithms and numerical methods inform numerous fields of study, including

but not limited to: machine learning and visualization; inverse issues; image

processing; concurrent or dispersed processing; and symbolic or algebraic

calculations.

II. ANALYSIS OF DELAY DIFFERENTIAL EQUATION

It was discovered a new way to use the continuous Runge-Kutta method to

solve neutral delay differential equations (Enright et al., 1997). Current findings

on instability for the first order delay differential equation and the first order

neutral delay differential equation were spotted (Sung et al., 1999). For a similar

polynomial equation with straightforward positive real roots, it was shown that

the bifurcation analysis can be simplified if the delay term appears at the

beginning of the equation (Jonathan Forde et al., 2004). With the help of step-

by-step calculations and computational reversal of Laplace transforms, a novel

approach was developed (Tamás Kalmár-Nagy, 2005).
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By estimating a harmonic function at the region's border, we were able to

determine the overall stability of the delay differential equation (Leping, 2005).

We have calculated the stability of the constant-delay trivial solution to the

second-order linear delay differential equation (Ali Fuat Yeniçerioglu, 2007).

The inverse Laplace transform, in conjunction with the procedure for the linear

delay-differential equation, can be used to locate a series of polynomial

approximants to the transcendental function determining the delay equation's

stability, which converges to the true value of the function (Tamas Kalmar-

Nagy, 2009). Equations with linear and nonlinear components were solved

numerically, analytically, and exactly using the Differential Transform Method

(DTM) (Karakoç et al., 2009). For a wide variety of fractional delay systems, a

useful computational method is provided for ensuring their stability (Farshad

Merrikh-Bayat et al., 2009).

For linked systems of differential equations on networks, we verify the global-

stability issue of equilibria (Michael et al., 2010). Stochastic delay differential

equations instant stable area in terms of coefficient factors (Peng et al., 2011).

For a stochastic delay differential equation, we investigate the impact of noise

and delay from the perspective of mean-square stability (Peng et al., 2011). The

use of stability switches has been presented as a means of gauging the

robustness of complex-DDEs (Junyu et al., 2011).

Padé time delay estimate was established after solving and analyzing the issue

of control design for incorporating unreliable time delay systems (Petr et al.,

2011). Nonlinear disturbances and time-varying delays in a switched system

were analyzed to determine their effect on the system's exponential stability.

Furthermore, altered system configurations for resilient exponential stability in

terms of linear matrix inequalities were achieved (Eakkapong et al., 2011).

Problems with the stability of linear continuous singular and discrete descriptor

systems were elucidated, both in the limitless and limited time settings.

Lyapunov stability and finite-time stability were both discussed at length. We

studied the Lyapunov and non-Lyapunov stability characteristics of
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conjunctions between classes of linear continuous and discrete time delayed

systems. These were offered by (Dragutin et al., 2011).

Second order delay differential equations with singular perturbations are

solved using an exponential method (Awoke et al., 2012). For two-delay

delayed systems, a mathematical technique was used to find a closed form for

stability switching curves (Xihui et al., 2012). For fractional-order differential

equations with a delay, we develop a numerical method using the Grunwald-

Letnikov derivative (Zhen Wang et al., 2013). For a delay differential equation,

we determined both the Ulam-Hyers stability and the extended Ulam-Hyers-

Rassias stability (Diana et al., 2013).

With the Domain Decomposition Method (ADM), we show a computational

solution to delay differential equations (DDE) (Ogunfiditimi, F.O, 2015).

Solutions to a linear trinomial delay differential equation of fourth order were

investigated for their oscillatory characteristics (Jozef et al., 2015). Furthermore,

the oscillation principle for third-order functional differential equations with

dampening was investigated (Martin et al., 2016). Conditions of global

attractivity for nonlinear equations and exponential stability for linear

equations with localized or designated delays have been met (Leonid et al.,

2016).

The multi-pantograph delay differential equations with constant parameters are

solved using the Sumudu Decomposition Method (SDM) (Sundas et al., 2016).

Another technique for solving delay differential equations with constant

latencies (delays) was given as well: the RK method, which is based on the

Heronian mean (Vinci et al., 2016). All solutions to nonlinear neutral delay

difference equations of first order with varying parameters were checked for

their ability to oscillate (Murugesan et al.,2016). In-depth studies were

conducted on the general solution and generalized Ulam-Hyers stability of an

n-dimensional quartic functional problem (Murthy et al.,2016).

III. Integral Calculus
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Since their introduction, functional equations have been of great interest

to mathematics. Integral equations, in which the undetermined function

is denoted by an integral symbol, have come to the fore in recent years.

These sorts of formulae are ubiquitous in numerous scientific and

mathematical disciplines. These integral equations are potent

instruments that can be used to address a wide variety of real-world

issues. All the starting and boundary value requirements for a

differential equation can be represented by a single integral equation. In

addition, the boundary value problem for a two-variable partial

differential equation is transformed into a one-variable integral equation

with an undetermined function. It is a major move forward to simplify a

complex mathematical model into a single solution, and substituting

differentiation with integration has additional benefits. The reality that

integration is a levelling procedure has significant consequences for

locating imprecise answers, which is where the advantages can be found.

Whether seeking a precise or approximate answer, the construction of

integral equations has proven to be helpful. Therefore, integral

equations were widely studied and their theory was created thoroughly

throughout the twentieth century.

Integral equation theory is a vital area of study in mathematics. The

concept of an integral transform originated with the well-known Fourier

integral formula. Transforming integrals effectively provides practical

approaches to handling initial value and initial-boundary value issues

for differential and integral equations, which is why they are so

important.

History of mathematics, and more particularly the history of applied

mathematics, is inextricably intertwined with the growth of the theory

of integral equations. For the first time, the Norwegian scientist Niels

Henrik Abel (1802-1829) provided a full answer to an integral equation

for a tautochrone issue in mechanics [8]. The goal of this issue is to find
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the equation of a curve in the vertical plane such that the amount of time

it takes for a mass point to move along this curve from a given positive

height to the horizontal line is a known function of the height.

At the close of the 19th century, work started on a unified theory of

integral equations. Several individuals, including V. Volterra (1896), E.

Fredholm (1903), E. Schmidt (1907), and D. Hilbert (1911), have been

given credit for developing this theory (1912). While Volterra did dabble

in integral equations as early as 1884, he didn't really get going on his

investigation until 1896. Readers were likely familiar with integral

equations before 1888, when Du Bios-Reymond first proposed the word.

Potential theory unquestionably made the largest contribution to the

advancement of integral equations. Integral equations were aided in

their growth by mathematical physics models like dispersion in

quantum mechanics, diffraction issues, ocean waves, and conformal

mapping. Many more uses in science and industry can be understood

through the use of integral formulae. Electrostatic, heat transfer, low

frequency electromagnetic issues, acoustic and elastic wave transmission,

electromagnetic dispersion problems, population development, particle

transport problems, heat diffusion, etc. are all examples of applications

where integral equations are commonly used. As a result, the results of

different quantitative procedures are crucial in these fields.

IV. Mathematics of Fractions

The development of uses remains an important job, even though

fractional calculus was presented over 300 years ago and has since been

used in many fields of science and industry. Many scientific and

technical fields, including those where nonlocality plays a vital part,

continue to show and study models. Differentiable functions have

characteristics that only specify integer order derivatives at a limited

distance from the studied location. Therefore, non-locality in space and

time cannot be characterized by the differential equation assessed for
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this position and including a limited number of integer-order

derivatives. This nonlocality is a key motivator for the development of

applications involving fractional calculus.

The so-called memory effect, in which prior events have an impact on

the present, is evident in a wide variety of occurrences. The impedance

of an electrical component, for instance, is proportional to the sum of the

charges that have flowed through it over a given time interval.

Attempting to describe and evaluate these memory effects using

classical differential equations can be challenging. Since fractional

derivatives are nonlocal, it is straightforward to include memory effects

in systems that exhibit them. Therefore, fractional calculus has been

shown to be one of the most efficient and potent mathematical

instruments for explaining the memory and genetic characteristics of

many processes and materials.

Certain natural events can be described more precisely than in

traditional calculus by using fractional or non-integer order calculus.

Aerodynamics, Fluid Mechanics [91], Earth System Dynamics,

Viscoelasticity, Quantum Mechanics [70], Nuclear Physics, Control

Theory, Biological Phenomena [92], Epidemic Processes [31], Signal and

Image Processing, Rheology [162], Economics, Electrical Networks [22],

Electromagnetic Theory [76], and Artificial Neural Networks have

Leibniz (1695), Liouville (1834), and Riemann (1892) were among the

first to develop the fundamental concepts of fractional calculus; however,

it was Abel (1823) who first used fractional calculus to solve an integral

equation, which is a byproduct of the so-called tautochrone problem's

formulation [8, 153]. Surely Liouville would have noticed Abel's answer

if it hadn't been so remarkable, and he would never have made the first

remarkable attempt to provide a rational meaning of the fractional

derivative as he did. Since then, numerous well-known mathematicians

have proposed various meanings of fractional derivatives; however, the
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most well-known and widely-used are those proposed by Riemann and

Liouville, Grunwald and Plotnikov, and Caputo [102, 152]. Riemann-

Liouville and Caputo both make use of the integral in their creation,

with the former using a modified version of the Cauchy integral formula

and the latter using the same basic idea.

The Cauchy algorithm for repetitive integration is stated in Section 1.3.1

as

���(�) =
1

(� − 1)! 0

�
 � (� − �)�−1�(�)��,� > 0,� ∈ �.

Definition 1.3.2. 152 Suppose that � > 0,� > 0,�,� ∈ � . Then the

ReimannLiouville fractional integral of order � of a function �(�) is defined as

���(�) =
1

Γ(�) 0

�
 � (� − �)�−1�(�)��.

Some properties of Reimann-Liouville fractional integral operator �� are as

follows:

1 For �,� ≥ 0

(a) �����(�) = ��+��(�)

(b) �����(�) = �����(�)

2 For � >− 1, ���� = Γ(1+�)
Γ(1+�+�)

��+�

Definition 1.3.3. Suppose that � > 0,� > 0 , and �,� ∈ � . Then the Reimann

Liouville fractional derivative of order � > 0 of a function �(�) is defined as

���(�) = ����−��(�)

=
��

���
1

Γ(� − �) 0

�
 �  (� − �)�−�−1�(�)�� ,

where � − 1 < � ≤ � and � ∈ �.

Few main properties of Reimann-Liouville fractional derivative are as follows:

1 �� is left inverse to ��, that is, �����(�) = �(�), but �����(�) ≠ �(�)

2 For � >− 1,���� = Γ(1+�)
Γ(1+�−�)

��−�

3 For � ∉ � and � = 0,
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���0 = ��1 =
1

Γ(1 − �)
�−�,

the constant's Reimann-Liouville fractional derivative is not equivalent to zero.

1.3.4 Meaning [4%,46] The formula for the Caputo fractional derivative of a

function f(t) of order is
����(�) = ��−����(�)

=

1
Γ(� − �) 0

�
 �  (� − �)�−�−1

���(�)
��� ��, � − 1 < � < �,� ∈ �

���(�)
���

, � = �,� ∈ �

re � > 0 and may take real or even complex values. This was first introduced by

the Italian mathematician Caputo in 196%.

For the Caputo derivative, we have
���� = 0, (� is a constant ),

����� =
0, � ≤ � − 1,
Γ(� + 1)��−�

Γ(� − � + 1)
, � > � − 1.

Similar to integer order differentiation Caputo derivative is linear.
���(��(�) + ��(�)) = �����(�) + �����(�)

where � and � are constants, and satisfies so called Leibnitz rule.

���(�(�)�(�)) =
�=0

∞

 � �
� �(�)(�)���−��(�)

if �(�) is continuous in [0,�] and �(�) has sufficient number of continuous

derivatives in [0,�].

CONCLUSION

The FEM was developed in response to the difficulty of structural analysis and

elasticity issues in Civil and Aerospace Engineering. Initially, the FEM's value

was only understood in terms of its ability to help with these types of applied

engineering challenges. This led to the discovery of the driving force behind the

creation of the FEM. Many other scholars quickly saw the method's potential in

tackling nonstructural areas, thanks to the method's solid mathematical basis
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and adaptability. Over the past sixty years, advances in Science and

Engineering have led to vastly superior FEM solutions for a wide range of

boundary value issues. This resulted in the method's widespread adoption as a

potent instrument for tackling a variety of difficult issues in Science and

Engineering.
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