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Abstract: - We propose a definition for the

Fuzzy Prolog Language that models

interval-valued Fuzzy Logic and subsumes

earlier approaches since it uses an accurate

representation of truth value that is based

on the union of intervals from real numbers.

It's constructed by general operators that

can be used to model various logics. We

provide the procedural and declarative

semantics of Fuzzy Logic

programs. Additionally, we describe the

design of an interpreter to this language

that is based on CLP(R). We have integrated

uncertainty into the Prolog program in an

straightforward method thanks to the

constraints system. The system is built on a

syntactic extension from the original source

code in this Prolog compilation.
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1.INTRODUCTION

Decision trees are widely utilized for

classifiers that are used successfully in

various application areas like security

assessment [1, health system [2 as well as

road congestion. The widespread use of

these trees comes in large part because of

the ease of their learning

model. Furthermore, decision trees are

considered to be among the best capable of

being interpreted classifiers [4],[5that is,

they are able to explain the way in which an

output is derived from inputs. In addition,

the process of tree learning typically has

only a few parameters to be altered. Many

algorithms include

have been suggested in recent decades to

create decision trees. The majority of these

are improvements or extensions of the

popular ID3 suggested by Quinlan and

colleagues. [6 and CART suggested by

Brieman and al. [7]. A decision tree every

inner (non-leaf) node signifies the testing of

an attribute. Each branch is the result that

was determined by the tests, every leaf (or

terminal) node is tagged with an identifier

for the class.

Many studies have investigated an

opportunity to integrate decision trees into

theories of fuzzy sets in order to tackle
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uncertainty [8, 9and [9], resulting in known

as fuzzy decision trees (FDTs). Contrary to

Boolean choice trees, the nodes of FDTs is

defined with a fuzzy set, rather than an

actual set. This means that each node can

trigger different branches and attain several

leaves. Each of Boolean or fuzzy trees can

be created using a top-down technique that

divides the data used for training into

homogeneous subsets. This is subsets of

instances belonging to the same class. As

with traditional decision trees FDTs are

classified into two major groups dependent

on the method of splitting employed in the

generation of children nodes from the

parent node [11] There are two kinds of

split trees: Binary (or two-way) split trees as

well as multi-way split tree. Binary split trees

are distinguished by recursively splitting

attributes into subspaces, so that every

parent node is linked precisely to 2 child

nodes. However multi-way split trees divide

the space into several of subspaces, so that

each parent creates generally at least two

children nodes. Because a tree with multi-

way splits is able to be transformed into an

unidirectional tree, using a multi-way split

doesn't seem to bring any advantages. It is

important to remember that a binary split

suggests that an attribute could be used

multiple times on the same route from root

to the leaf. So it is true that a binary split

tree tends to be more complex and can be

difficult to understand than a tree split in

multiple ways. Additionally, in certain

domains multi-way splits may produce

more accurate trees, but since multi-way

splits tends to disperse the training data

quickly, they usually require greater data

volumes to function effectively.

In general, FDT learning algorithms require

that a fuzzy partition have been defined for

every continuous attribute. Because of this,

continuous attributes are typically

discretized by optimizing specially defined

indexes. Discretization has a significant

impact on the effectiveness of classifiers

and, therefore, should be implemented with

diligence. The authors conducted an

interesting analysis that examined how

different methods of discretization affect

the precision and difficulty (in terms of the

number of nodes) of FDTs generated using

a range of well-known fuzzy partitioning

techniques and various approaches to the

Boolean partition that is generated by well-

known algorithms for discretization, by

defining various types of functions for

membership. The research results on 111

different combinations show how seven are

superior to the other models in terms of

precision and quantity of the nodes. FDTs

have been extensively used in research
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papers to classify small-scale data

sets. Therefore FDT methods of learning

have been concentrated on improving the

accuracy of classification but have often

neglected space and time requirements

using a variety of tasks, such as the pruning

process, genetic algorithms and the

calculation of the best division of the points

on each node.

Therefore, these methods do not work well

when handling a large quantity of data. One

possible solution to using these techniques

is to pick a smaller portion of data objects

using any down sampling technique.

However, these methods could overlook

some important information and make FDT

learning strategies specifically designed for

managing the whole dataset more

beneficial and efficient. In our case, this is a

way of explicitly addressing Big Data. The

term "Big" Data refers to a phrase that is

used to describe data sets that are so vast

and complex that conventional techniques

for processing data are insufficient. Big Data

requires specific technologies to handle

unstructured or semi structured data, and to

scale up with standard hardware to handle

growing data volumes.

To meet these challenges, a variety of

solutions have been proposed over the past

few time, for example: (i) cloud computing

as which is an infrastructure layer to allow

big data systems , to satisfy requirements

regarding efficiency, cost effectiveness and

capacity to expand or scale down; (ii)

distributed file systems as well as NoSQL

databases, to provide persistent data

storage as well as management for large

datasets that do not require a scheme; (iii)

MapReduce and Pregel two programming

models that were developed by Google to

simplify the distribution of computation

across large-scale clusters of computers; (iv)

cluster computing frameworks, which are

powerful solutions for system-level use that

include Apache Hadoop and Apache Spark

for distributed processing and storage as

well as system as well as failure control, as

well as efficient utilization of disks and

bandwidth on networks.

Most studies published in the literature on

mining big data include the MapReduce

model along with using the Apache Hadoop

and Apache Spark cluster computing

frameworks. Concerning classification

problems Recent research has presented a

number of distributed MapReduce versions

of classic algorithms, including SVM proto

reduction, kNN associative classifiers,

boosting decision trees and Naive Bayes

classifiers, and neural networks that study
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the performance of these algorithms in

terms of speed up. With the increasing of

the volume and quantity of data that is big

researchers are constantly examining new

algorithms that take into consideration not

just the accuracy of classification algorithms,

but also the scaleability of the algorithms

proposed, few studies have combined fuzzy

set theory.

The choice trees are widely used

classification tools that are utilized

successfully in many areas of application

such as security appraisal, wellness

framework as well as street movement

obstruction. The popularity of choice trees

is in large part due to the ease of their

learning diagrams. Furthermore, they are

regarded as to be among the classifiers that

are most interpretable which means that

they are able to define how yields are

constructed from sources of information. In

the end the tree-learning process generally

only requires a couple of parameters to be

weighed. Many have been proposed in the

last few years for the production of choice

trees. most of them are extensions or

enhancements of the renowned ID3

suggested by Quinlan and others. and CART

suggested by Brieman and others. In a

CART-based choice tree the interior of each

(non-leaf) hub signifies an assessment of a

quality and each branch reflects the

outcome from the testing, every leaf (or

terminal) hub is associated with an identifier

for the class.

Some works have abused the potential of

coordinating choice trees using fuzzy set

theories in order to mitigate vulnerabilities,

resulting in the creation of soft decision

trees (FDTs). They are not at all as Boolean

selection trees each hub within FDTs is

depicted as an oversized set, not an actual

set. The result is that every event can create

a variety of branches, and even achieve

diverse take-offs. They both Boolean or

fluffy choices are constructed using a best-

down method that divides the prepared

information into homogeneous subsets.

That are, subsets of instances that are in

similar classes. As with traditional choice

trees FDTs are arranged in two main groups,

based on the method used when creating

tyke hubs from an existing hub twofold (or

two-way) split trees as well as multi-way

splits. Zweifold splits are represented by

recursively splitting the typical space into

two distinct subspaces, so that each hub of

a parent is linked specifically with two hubs

for youngster. In addition, multi-way split

trees divide the space into multiple

subspaces in order to ensure that each

hub's parent produces typically more than
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of two hubs for toddlers. Because multi-way

elements can be continuously drawn as an

unidirectional tree, using multiway split is

not a advantage in terms of location. One

must remember the fact the fact that paired

split indicates that a particular characteristic

could be applied a few times in the same

manner from the roots to the leaves. In this

way, the paired split tree is typically more

extensive it is more difficult to translate

than a multi-way split. Additionally, in

certain areas multi-way components are

more precise trees in all instances, because

multi-way parts tend to separate the

information for preparation quickly They

generally require a larger estimate of

information with regard to the final purpose

to ensure that they work effectively.

2. RELATED WORK

Numerous studies have examined the ways

in which a decision tree could be efficiently

constructed from vast data sets. The

different methods discussed in the literature

could be divided into two groups one, that

is, they are defined by pre-sorting the data

or using approximate representations of

data, such as histograms or samples. While

pre-sorting methods are more precise but

they're not able to accommodate large data

sets or streaming data.

One of the most well-known techniques

that fall into the category of first is SLIQ

which was first that was first proposed

in. The SLIQ approach reduces decision tree

learning time, but without sacrificing

accuracy through the use of an algorithm

for pre-sorting in the phase of tree

growth. This technique is combined with a

breadth first tree-growing method to allow

classification of data that reside on

disks. SLIQ also employs an algorithm for

tree pruning that is based on the Minimum

Description Length concept, which is low-

cost and produces precise and compact

trees.

Yet, SLIQ requires that some records

contain data in memory for all time. Since

the size of the memory-based structure of

data grows proportionally to the input

records, this restricts the quantity of data

that can be classified by the SLIQ. SPRINT,

as proposed in, eliminates the limitations on

memory. Additionally, it has been

developed so that it can be quickly

parallelized and achieve high scaling.

In the second group that is the second

category, the BOAT algorithm is an

innovative method of tree construction

which creates an initial tree by using a tiny

portion of data, and then refines it until it
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produces an end-to-end tree. The authors

warrant that there will not be any

differences from the actual tree (i.e. the

actual tree that was constructed by

Analysing all the data the traditional

manner) is identified and rectified. The

different branches of the tree constructed

within two scans over the training data. In a

decision tree building algorithm, a

technique known as SPIES is

suggested. SPIES restricts the possible split-

points by using a small sample from an

array of values, dividing the data into

intervals, and calculates class histograms of

the possible split points. This decreases the

complexity of space of the algorithm, as

well as the communication costs between

processors.

The many methods to parallelize the

process of learning by decision trees can be

classified into four main categories which

are: 1.) horizontal or data-based parallelism

divides the data in such a way that different

processors are able to work with various

examples while the second) vertical or

feature-based parallelism allows different

processors to take into consideration

different aspects and Iii) tree, or task node-

based, parallelism allocates the tree nodes

among the slave processors , and the fourth)

hybrid parallelism blends horizontal and

vertical parallelism in the initial phases of

tree building and task parallelism toward

the close. The authors explain the possibility

of parallelizing two distinct algorithms for

learning decision trees such as C4.5 and the

linear discriminant univariate tree suggested

using vertical, horizontal as well as the task

of parallelisation. The results of experiments

show that the performance of the

parallelization is highly dependent on the

data, however the node-based approach

generally provides significant speed

improvements. The authors use an

approximate representation, as well as

horizontal parallelism. The heart part of this

algorithm is an online procedure to build

histograms using streams of data processed

by processors. Histograms represent

compressed versions of data that can be

sent into a master processor that has little

or no communications complexity. The

master processor incorporates the

information from all processors and decides

the terminal nodes that need to be split and

in what order. A brief overview of the

algorithms for learning decision trees that

are proposed to deal with large-scale

datasets is presented in. Based on previous

work of distributed decision trees the FDT

learning algorithms presented in this paper



ISSN: 2366-1313

Volume III Issue II NOVEMBER 2018 www.zkginternational.com 52

take advantage of both task and horizontal

parallelism.

In recent several years, a variety of decision

tree-based learning algorithms were

proposed to handle massive amounts of

data. They have adopted the MapReduce

approach on foundation of Apache

Hadoop. MapReduce is based on functional

programming. It divides the computational

process into two major stages, specifically

Map and Reduce that communicate using

pairs of hkey and valuei. MapReduce is a

MapReduce implementation of a distributed

decision tree suggested uses, for example

four map-reduce steps. The initial stage is a

scan of the data for the data structures that

will be used in the remaining three

stages. The stages are repeated for (i)

choosing the best quality attribute (ii)

making changes to the stats of the new

nodes, and (iii) expanding the tree. The

results of the experiments discussed within

the article are restricted to scalability

analysis by altering the number of nodes as

well as the size of the data (up to 3 million

instances). The efficiency of the decision

trees in managing large data has been

proven in real-world applications like the

prediction of stock futures and clinical

decision assistance. Others use decision

trees to create ensembles of classifiers, such

as random forest.

3. METHODOLOGY

In this section, we first introduce the FDT

and the necessary notations used in the

paper and then we describe both the

MapReduce programming model and the

Apache Spark cluster computing framework.

This framework is exploited in our DFDT.

A. Fuzzy Decision Tree Instance

classification consists of assigning a class

Cm from a predefined set C = fC1;CMg of

M classes to an unlabeled instance. Each

instance can be described by both

numerical and categorical attributes. Let X =

fX1; ;XF g be the set of attributes. In case of

numerical attributes, Xf is defined on a

universe Uf <. In case of categorical

attributes, Xf is defined on a set Lf =

fLf;1;Lf;Tf g of categorical values. An FDT is a

directed acyclic graph, where each internal

(non-leaf) node denotes a test on an

attribute, each branch represents the

outcome of the test, and each leaf (or

terminal) node holds one or more class

labels. The topmost node is the root node.

In general, each leaf node is labeled with

one or more classes Cm with an associated

weight wm: weight wm determines the

strength of class Cm in the leaf node.
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Let TR = f(x1; y1); (x2; y2); :::; (xN; yN)g be

the training set, where, for each instance (xi;

yi), with i = 1; :::;N, yi 2 C and xi;f 2 Uf in case

of continuous attribute and xi;f 2 Lf in case

of categorical attribute, with f = 1; :::; F. FDTs

are generated in a top-down way by

performing recursive partitions of the

attribute space.

Algorithm 1 shows the scheme of a generic

FDT learning process. The Select Attribute

procedure selects the attribute used in the

decision node and determines the splits

generated from the values of this attribute.

The selection of the attribute is carried out

by using appropriate metrics, which

measure the difference between the levels

of homogeneity of the class labels in the

parent node and in the child nodes

generated by the splits. The commonly used

metrics are the fuzzy information gain, fuzzy

Gini index, minimal ambiguity of a

possibility distribution, maximum

classification importance of attribute

contributing to its consequent and

normalized fuzzy Kolmogorov-Smirnov

discrimination quality measure. In this paper,

we adopt the fuzzy information again, which

will be defined in Section IV-B. The splitting

method adopted in the Select Attribute

procedure determines the attribute to be

selected and also the number of child nodes.

In the literature, both multi-way and binary

splits are used. We have implemented both

the approaches and evaluated their pros

and cons. Once the tree has been generated,

a given unlabeled instancebx is assigned to

a class Cm 2 C by following the activation of

nodes from the root to one or more leaves.

In classical decision trees, each node

represents a crisp set and each leaf is

labelled with a unique class label. It follows

that bx activates a unique path and is

assigned to a unique class. In FDT, each

node represents a fuzzy subset. Thus, bx can

activate multiple paths in the tree, reaching

more than one leaf with different strengths

of activation, named matching degrees.

Given a current node CN, the matching

degree mdCN(bx) of bx with CN is

calculated as:

where TN is a T-norm, CN(bxf ) is the

membership degree of bxf to the current

node CN, which onsiders Xf as splitting

attribute, and mdPN(bx) is the matching

degree of bx with the parent node PN.

The association degree ADLN m (bx) of bx

with the class Cm at leaf node LN is

calculated as:
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where mdLN(bx) is the matching degree of

bx with LN and wLN m is the class weight

associated with Cm at leaf node LN. In the

literature, different definitions have been

proposed for weight wLN m. Further, it has

been proved that the use of class weights

can increase the performance of fuzzy

classifiers. To determine the output class

label of the unlabeled instance bx, two

different approaches are often adopted in

the literature: maximum matching: the class

corresponds to the maximum association

degree calculated for the instance.

weighed vote: the class corresponds to the

maximum total strength of vote. The total

strength of vote for each class is computed

by summing all the activation degrees in

each leaf for the class. If no leaf has been

reached, the instance bx is classified as

unknown.In 2004, Google proposed the

MapReduce programming framework [5] for

distributing the computation flow across

large-scale clusters of machines, taking care

of communication, network bandwidth, disk

usage and possible failures.

At high level, the framework, which is based

on functional programming, divides the

computational flow into two main phases,

namely Map and Reduce, organized around

hkey; valuei pairs. When the MapReduce

execution environment runs a user program,

the framework automatically partitions the

data into a set of independent chunks, that

can be processed in parallel by different

machines. Each machine can host several

Map and Reduce tasks. In the Map phase,

each Map task is fed by one chunk of data

and, for each hkey; valuei pair as input, it

generates a list of intermediate hkey; valuei

pairs as output.

In the Reduce phase, all the intermediate

results are grouped together according to a

key-partitioning scheme, so that each

Reduce task processes a list of values

associated with a specific key as input for

generating a new list of values as output. In

general, developers are able to implement

parallel algorithms that can be executed

across the cluster by simply defining Map

and Reduce functions.

4. THE PROPOSED DISTRIBUTED FUZZY

DECISION TREE FOR BIG DATA

The distributed method proposed lets you

manage a vast amount of data. Performing

the splitting of a set of nodes dramatically

reduces the number of scans across the

training set, however it also requires a

higher amount of memory, and a greater

processing time per iteration (the cost of

computation is minimized by aggregating
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and collecting the essential data). So, the

total number of nodes that can be

processed in parallel on every iteration, is

determined by the availability of memory

for the cluster. Naturally, the greater

number of categorical values and fuzzy sets

that are defined by fuzzy partitioning the

greater the amount of memory utilized to

store the statistics and the lesser amount of

the nodes which can be processed in

parallel on each repetition.

with a complete dataset, varying the

number of CUs; iii) ability to efficiently

accommodate an increasing dataset size.

As shown in Table I, we employed 10 well-

known big datasets freely available from the

UCI2 repository. The datasets are

characterized by different numbers of

input/output instances (from 1 million to 11

million), classes (from 2 to 50), and

attributes (from 10 to 41). For each dataset,

we also reportthe number of numeric (num)

and categorical (cat) attributes.

5. CONCLUSION

We have developed an dispersed fuzzy

decision tree (FDT) learning algorithm that

is designed in accordance with the

MapReduce programming model that

generates the binary (FBDT) as well as

multi-way (FMDT) FDTs using large

data. We first proposed an innovative

distributed fuzzy discretise that creates

strong fuzzy partitions for every continuous

attribute, based on fuzzy information and

entropy. We then have presented a

distributed implementation the FDT

learning algorithm that utilizes fuzzy

information gain to select the attributes that

will be used to determine the nodes. The

algorithm has been implemented by us FDT

learning algorithm on Apache Spark.

Apache Spark framework.

Experiments conducted on 10 large datasets

from the real world demonstrate that our

method can be used to attain speedup and

scalability levels that are like the ideal

figures. It is important to note that these

results can be achieved without the need

for specific hardware, rather using a small

number of personal computers that are

connected via Gigabit Ethernet. The results

were contrasted with those obtained using

the distributed decision tree (DDT) which is

a part of the MLlib library that is part of

Apache Spark framework and by Chi-FRBCS

BigData, which is a MapReduce distributed

fuzzy rule-based classification system. For

comparison, we've examined accuracy,

complexity, as well as the time to

execute. We have discovered that FBDT
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outperforms Chi-FRBCS BigData, FMDT and

DDT regarding accuracy. For complexity

FBDT as well as DDT employ smaller

(generally an order of the magnitude)

number of nodes than FMDT. Furthermore,

the number rules that are extracted using

three trees of decision, are typically smaller

than that of Chi-FRBCS-BigData. From a

time perspective both FBDT and FMDT have

similar computation times, however both

are less efficient than DDT (not unexpected,

considering fact that both FBDT and FMDT

use an unreliable partitioning process and

handle more data because of fuzzy logic)

However, they're more efficient than Chi-

FRBCS BigData. The time for computation

also grows roughly linearly with the amount

of computation units and instances.

In the paper's overall argument, the primary

reason for the idea of FBDT as well as FMDT

is to create effective and efficient classifiers

for managing large data. The distribution of

data across computer cluster results in

parallelization of fuzzy decision tree

learning process and, consequently, the

ability to generate trees faster. Therefore,

FBDT and FMDT have a place in every

domain where decision trees must be

created quickly using a lot of data. For

instance, increasing number of sensors

being used and the subsequent need to

gain useful information from information

gathered from these sensors has led to an

increase in demand for data mining

techniques that stream data, and possibly

that are able to control concept drift. Most

approaches used in this case employ sliding

windows that are size that is variable or

fixed and a retraining mode. A window is

kept that includes the most recent instances,

and older examples are eliminated in

accordance with a set of guidelines. The

retraining method discards the model and

creates a new model from scratch using

buffered data from windows. A

comprehensive overview of the analysis of

streaming data and concept drift adaptive is

available. Our fuzzy decision tree-based

learning algorithms are especially suitable

for the retraining mode of learning

particularly for windows that are large.

We conclude that the research described in

this paper is the very first comprehensive

study of applying FDTs to big data looking

at the binary and multi-way splits. We

anticipate that the results from the

experiments will serve as a reference to

further research into this area.
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